2024年广西壮族自治区北海市数学九上开学达标检测模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)下列事件中,属于必然事件的是( )
A.某校初二年级共有480人,则至少有两人的生日是同一天
B.经过路口,恰好遇到红灯
C.打开电视,正在播放动画片
D.抛一枚硬币,正面朝上
2、(4分)下列各式不能用公式法分解因式的是( )
A.B.
C.D.
3、(4分)在中,斜边,则
A.10B.20C.50D.100
4、(4分)若三角形的各边长分别是8cm、10cm和16cm,则以各边中点为顶点的三角形的周长为( )
A.34cmB.30cmC.29cmD.17cm
5、(4分)若关于x的方程的解为负数,则m的取值范围是( )
A.B.C.D.
6、(4分)某学校组织学生进行社会主义核心价值观的知识竞赛,进入决赛的共有名学生,他们的决赛成绩如下表所示:
那么名学生决赛成绩的众数和中位数分别是( )
A.,B.,C.,D.,
7、(4分)已知不等式组的解集如图所示(原点未标出,数轴的单位长度为1),则 的值为( )
A.4B.3C.2D.1
8、(4分)某跳远队准备从甲、乙、丙、丁4名运动员中选取成绩好且稳定的一名选手参赛,经测试,他们的成绩如下表,综合分析应选( )
A.甲B.乙C.丙D.丁
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)在Rt△ABC中,∠C=90°,AC=5,BC=12,则连结两条直角边中点的线段长为_______.
10、(4分)合作小组的4位同学在课桌旁讨论问题,学生A的座位如图所示,学生B,C,D随机坐到其他三个座位上,则B坐在2号座位的概率是 .
11、(4分)当_____________时,在实数范围内有意义.
12、(4分)如图,在平面直角坐标系中,OAB是边长为4的等边三角形,OD是AB边上的高,点P是OD上的一个动点,若点C的坐标是,则PA+PC的最小值是_________________.
13、(4分)如图所示,平行四边形中,点在边上,以为折痕,将向上翻折,点正好落在上的处,若的周长为8,的周长为22,则的长为__________.
三、解答题(本大题共5个小题,共48分)
14、(12分)世界上大部分国家都使用摄氏温度(℃),但美国,英国等国家的天气预报都使用华氏温度(℉),两种计量之间有如下对应:
已知华氏温度y(℉)是摄氏温度x(℃)的一次函数.
求该一次函数的解析式;
当华氏温度14℉时,求其所对应的摄氏温度.
15、(8分)某商场销售A,B两款书包,己知A,B两款书包的进货价格分别为每个30元、50元,商场用3600元的资金购进A,B两款书包共100个.
(1)求A,B两款书包分别购进多少个?
(2)市场调查发现,B款书包每天的销售量y(个)与销售单价x(元)有如下关系:y=-x+90(60≤x≤90).设B款书包每天的销售利润为w元,当B款书包的销售单价为多少元时,商场每天B款书包的销售利润最大?最大利润是多少元?
16、(8分)如图,在平行四边形 中,、 的平分线 分别与线段 交于点 , 与 交于点 .
(1) 求证:,;
(2) 若 ,,,求 和 的长度.
17、(10分)某篮球队对队员进行定点投篮测试,每人每天投篮10次,现对甲、乙两名队员在五天中进球数(单位:个)进行统计,结果如下:
经过计算,甲进球的平均数为8,方差为3.2.
(1)求乙进球的平均数和方差;
(2)如果综合考虑平均成绩和成绩稳定性两方面的因素,从甲、乙两名队员中选出一人去参加定点投篮比赛,应选谁?为什么?
18、(10分)某汽车销售公司经销某品牌A款汽车,随着汽车的普及,其价格也在不断下降.今年5月份A款汽车的售价比去年同期每辆降价1万元,如果卖出相同数量的A款汽车,去年销售额为100万元,今年销售额只有90万元.
(1)今年5月份A款汽车每辆售价多少万元?
(2)为了增加收入,汽车销售公司决定再经销同品牌的B款汽车,已知A款汽车每辆进价为7.5万元,B款汽车每辆进价为6万元,公司预计用不多于105万元且不少于99万元的资金购进这两款汽车共15辆,有几种进货方案?
(3)如果B款汽车每辆售价为8万元,为打开B款汽车的销路,公司决定每售出一辆B款汽车,返还顾客现金a万元,要使(2)中所有的方案获利相同,a值应是多少?此时,哪种方案对公司更有利?
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)分解因式:2a3﹣8a=________.
20、(4分)如图,一架15m长的梯子AB斜靠在一竖直的墙OA上,这时梯子的顶端A离地面距离OA为12m,如果梯子顶端A沿墙下滑3m至C点,那么梯子底端B向外移至D点,则BD的长为___m.
21、(4分)如图,ABCD的对角线相交于点O,且ADCD,过点O作OMAC,交AD于点M.如果CDM的周长为8,那么ABCD的周长是__.
22、(4分)已知直线y=2x+4与x轴、y轴分别交于A、B两点,点P(-1,m)为平面直角坐标系内一动点,若△ABP面积为1,则m的值为______.
23、(4分) “端午节”前,商场为促销定价为10元每袋的蜜枣粽子,采取如下方式优惠销售:若一次性购买不超过2袋,则按原价销售;若一次性购买2袋以上,则超过部分按原价的七折付款.张阿姨现有50元钱,那么她最多能买蜜枣粽子_____袋.
二、解答题(本大题共3个小题,共30分)
24、(8分)某中学举行了一次“世博”知识竞赛.赛后抽取部分参赛同学的成绩进行整理,并制作成图表如下:
请根据以上图表提供的信息,解答下列问题:
(1)写出表格中m和n所表示的数:m= ,n= ,并补全频数分布直方图;
(2)抽取部分参赛同学的成绩的中位数落在第 组;
(3)如果比赛成绩80分以上(含80分)可以获得奖励,那么获奖率是多少?
25、(10分)小明家准备给边长为6m的正方形客厅用黑色和白色两种瓷砖铺设,如图所示:①黑色瓷砖区域Ⅰ:位于四个角的边长相同的小正方形及宽度相等的回字型边框(阴影部分),②白色瓷砖区域Ⅱ:四个全等的长方形及客厅中心的正方形(空白部分).设四个角上的小正方形的边长为x(m).
(1)当x=0.8时,若客厅中心的正方形瓷砖铺设的面积为16m2,求回字型黑色边框的宽度;
(2)若客厅中心的正方形边长为4m,白色瓷砖区域Ⅱ的总面积为26m2,求x的值.
26、(12分)如图l,已知正方形ABCD的对角线AC、BD相交于点O,E是AC上一点,连结EB,过点A作AMBE,垂足为M,AM交BD于点F.
(1)求证:OE=OF;
(2)如图2,若点E在AC的延长线上,AMBE于点M,交DB的延长线于点F,其它条件不变,则结论“OE=OF”还成立吗.如果成立,请给出证明;如果不成立,请说明理由.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、A
【解析】A. 某校初二年级共有480人,则至少有两人的生日是同一天;属于必然事件;
B. 经过路口,恰好遇到红灯;属于随机事件;
C. 打开电视,正在播放动画片;属于随机事件;
D. 抛一枚硬币,正面朝上;属于随机事件。
故选A.
2、C
【解析】
根据公式法有平方差公式、完全平方公式,可得答案.
【详解】
A、x2-9,可用平方差公式,故A能用公式法分解因式;
B、-a2+6ab-9 b2能用完全平方公式,故B能用公式法分解因式;
C、-x2-y2不能用平方差公式分解因式,故C正确;
D、x2-1可用平方差公式,故D能用公式法分解因式;
故选C.
本题考查了因式分解,熟记平方差公式、完全平方公式是解题关键.
3、D
【解析】
根据勾股定理计算即可.
【详解】
在中,,
,
故选:D.
本题考查勾股定理,解题的关键是记住在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.
4、D
【解析】
根据三角形中位线定理分别求出DE、EF、DF,根据三角形的周长公式计算即可.
【详解】
解:
∵D、E分别为AB、BC的中点,
∴DE=AC=5,
同理,DF=BC=8,FE=AB=4,
∴△DEF的周长=4+5+8=17(cm),
故选D.
本题考查的是三角形中位线定理,三角形的中位线平行于第三边,并且等于第三边的一半.
5、B
【解析】
先把m当作已知条件求出x的值,再根据x的值是负数列出关于m的不等式,求出m的取值范围即可.
【详解】
解:∵1x-m=1+x,
∴x=,
∵关于x的方程1x-m=1+x的解是负数,
∴<0,
解得m<-1.
故选:B.
本题考查的是解一元一次不等式,熟知不等式的基本性质是解答此题的关键.
6、B
【解析】
根据众数的定义,找到该组数据中出现次数最多的数即为众数;根据中位数定义,将该组数据按从小到大依次排列,处于中间位置的两个数的平均数即为中位数.
【详解】
∵85分的有8人,人数最多,
∴众数为85分;
∵处于中间位置的数为第10、11两个数为85分,90分,
∴中位数为87.5分.
故选B.
本题考查了众数与中位数的意义,该组数据中出现次数最多的数为众数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,解决问题时如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.
7、A
【解析】
首先解不等式组,然后即可判定的值.
【详解】
,解得
,解得
由数轴,得
故选:A.
此题主要考查根据不等式组的解集求参数的值,熟练掌握,即可解题.
8、B
【解析】
根据平均数与方差的性质即可判断.
【详解】
∵4位运动员的平均分乙最高,甲成绩也很好,但是乙的方差较小,故选乙
故选B.
此题主要考查利用平均数、方差作决策,解题的关键是熟知平均数、方差的性质.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、6.5
【解析】
试题分析:依题意作图可知EF为Rt△ABC中位线,则EF=AB.在Rt△ABC中AB=
所以EF=6.5
考点:中位线定理
点评:本题难度较低,主要考查学生对三角形中位线定理知识点的掌握.
10、.
【解析】
根据概率的求法,找准两点:①全部等可能情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.因此,
∵坐到1,2,3号的坐法共有 6 种方法:BCD、BDC、CBD、CDB、DBC、DCB,其中有 2 种方法(CBD、DBC)B坐在2号座位,
∴B坐在2号座位的概率是.
11、a≥1
【解析】
根据二次根式有意义的条件可得a-1≥0,再解不等式即可.
【详解】
由题意得:a-1≥0,
解得:a≥1,
故答案为: a≥1.
此题主要考查了二次根式有意义的条件,关键是掌握二次根式中的被开方数是非负数.
12、
【解析】
由题意知,点A与点B关于直线OD对称,连接BC,则BC的长即为PC+AP的最小值,过点B作BN⊥y轴,垂足为N,过B作BM⊥x轴于M,求出BN、CN的长,然后利用勾股定理进行求解即可.
【详解】
由题意知,点A与点B关于直线OD对称,连接BC,则BC的长即为PC+AP的最小值,
过点B作BN⊥y轴,垂足为N,过B作BM⊥x轴于M,则四边形OMBN是矩形,
∵△ABO是等边三角形,
∴OM=AO=×4=2,∴BN=OM=2,
在Rt△OBM中,BM===2,
∴ON=BM=2,
∵C,
∴CN=ON+OC=2+=3,
在Rt△BNC中,BC=,
即PC+AP的最小值为,
故答案为.
本题考查了轴对称的性质,最短路径问题,勾股定理,等边三角形的性质等,正确添加辅助线,确定出最小值是解题的关键.
13、1.
【解析】
依据△FDE的周长为8,△FCB的周长为22,即可得出DF+AD=8,FC+CB+AB=22,进而得到平行四边形ABCD的周长=8+22=30,可得AB+BC=BF+BC=15,再根据△FCB的周长=FC+CB+BF=22,即可得到CF=22-15=1.
【详解】
解:由折叠可得,EF=AE,BF=AB.
∵△FDE的周长为8,△FCB的周长为22,
∴DF+AD=8,FC+CB+AB=22,
∴平行四边形ABCD的周长=8+22=30,
∴AB+BC=BF+BC=15,
又∵△FCB的周长=FC+CB+BF=22,
∴CF=22-15=1,
故答案为:1.
本题考查了平行四边形的性质及图形的翻折问题,折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变.
三、解答题(本大题共5个小题,共48分)
14、(1)y=1.8x+1;(2)华氏温度14℉所对应的摄氏温度是-2℃.
【解析】
分析:(1)设y=kx+b(k≠0),利用图中的两对数,用待定系数法求解即可;
(2)把 y=14代入(1)中求得的函数关系式求出x的值即可.
详解:(1)设一次函数表达式为y=kx+b(k≠0).
由题意,得,解得.
∴一次函数的表达式为y=1.8x+1.
(2)当y=14时,代入得14=1.8x+1,解得x=-2.
∴华氏温度14℉所对应的摄氏温度是-2℃.
点睛:本题考查了一次函数的应用,熟练掌握待定系数法是解答本题的关键. 利用待定系数法求函数解析式的一般步骤:①先设出函数解析式的一般形式;②将已知点的坐标代入所设的解析式,得到关于待定系数的方程或方程组;③解方程或方程组,求出待定系数的值,进而写出函数解析式.
15、(1)A,B两款书包分别购进70和30个;(2)B款书包的销售单价为70元时B款书包的销售利润最大,最大利润是400元
【解析】
(1)此题的等量关系为:购进A款书包的数量+购进B款书包的数量=100;购进A款书包的数量×进价+购进B款书包的数量×进价=3600,设未知数,列方程求解即可.
(2)根据B款书包每天的销售利润=(B款书包的售价-B款书包的进价)×销售量y,列出w与x的函数解析式,再利用二次函数的性质,即可解答.
【详解】
(1)解: 设购进A款书包x个,则B款为(100−x)个,
由题意得:30x+50(100−x)=3600,
解之:x=70,
∴100-x=100-70=30
答:A,B两款书包分别购进70和30个.
(2)解: 由题意得:w=y(x−50)=−(x−50)(x−90)=-x2+140x-4500,
∵−1<0,故w有最大值,
函数的对称轴为:x=70,而60⩽x⩽90,
故:当x=70时,w有最大值为400,
答:B款书包的销售单价为70元时B款书包的销售利润最大,最大利润是400元.
考核知识点:二次函数y=a(x-h)2+k的性质,二次函数的实际应用-销售问题.
16、 (1)证明见解析;(2) 的长度为 2,的长度为 .
【解析】
(1)由在平行四边形 中,、 的平分线 分别与线段交于点 ,易求得 ,即可得,证得 ,易证得与 是等腰三角形,即可得 ,,又由 ,即可证得;
(2)由(1)易求得 ,,即可求得 的长;过点 作 交 的延长线于点 ,易证得四边形 为平行四边形,即可得是直角三角形,然后利用勾股定理,即可求得 的长.
【详解】
(1) 证明:∵ 平分,
∴.
∵平分,
∴.
∵ 四边形 平行四边形,
∴,,,
∴,
∴.
∴.
∴;
∵,
∴,
∴,
∴,
∵,
∴,
∴,
∴,
∵.
∴;
(2) 解:∵,
∴.
∴,
∵四边形 平行四边形,
∴.
∴,
∴,
过点 作 交 的延长线于点 .
∴.
∵,
∴四边形 为平行四边形.
∴,.
∴,
∴在 中:.
∴ 的长度为 2,的长度为 .
故答案为:(1)证明见解析;(2) 的长度为 2,的长度为 .
本题考查平行四边形的判定与性质、等腰三角形的判定与性质、垂直的定义以及 勾股定理等知识.此题综合性较强,难度较大,注意掌握数形结合思想的应用,注意掌握辅助线的作法.
17、(1)乙平均数为8,方差为0.8;(2)乙.
【解析】
(1)根据平均数、方差的计算公式计算即可;
(2)根据平均数相同时,方差越大,波动越大,成绩越不稳定;方差越小,波动越小,成绩越稳定进行解答.
【详解】
(1)乙进球的平均数为:(7+9+7+8+9)÷5=8,乙进球的方差为:[(7﹣8)2+(9﹣8)2+(7﹣8)2+(8﹣8)2+(9﹣8)2]=0.8;
(2)∵二人的平均数相同,而S甲2=3.2,S乙2=0.8,∴S甲2>S乙2,∴乙的波动较小,成绩更稳定,∴应选乙去参加定点投篮比赛.
本题考查了方差的定义:一般地设n个数据,x1,x2,…xn的平均数为,则方差S2[(x1)2+(x2)2+…+(xn)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.也考查了平均数.
18、(1)1万元 (2)共有5种进货方案 (3)购买A款汽车6辆,B款汽车1辆时对公司更有利
【解析】
分析:(1)求单价,总价明显,应根据数量来列等量关系.等量关系为:今年的销售数量=去年的销售数量.
(2)关系式为:公司预计用不多于2万元且不少于11万元的资金购进这两款汽车共15辆.
(3)方案获利相同,说明与所设的未知数无关,让未知数x的系数为0即可;多进B款汽车对公司更有利,因为A款汽车每辆进价为7.5万元,B款汽车每辆进价为6万元,所以要多进B款.
详解:(1)设今年5月份A款汽车每辆售价m万元.则:
,
解得:m=1.
经检验,m=1是原方程的根且符合题意.
答:今年5月份A款汽车每辆售价1万元;
(2)设购进A款汽车x辆,则购进B款汽车(15﹣x)辆,根据题意得:
11≤7.5x+6(15﹣x)≤2.
解得:6≤x≤3.
∵x的正整数解为6,7,8,1,3,∴共有5种进货方案;
(3)设总获利为W万元,购进A款汽车x辆,则:
W=(1﹣7.5)x+(8﹣6﹣a)(15﹣x)=(a﹣0.5)x+30﹣15a.
当a=0.5时,(2)中所有方案获利相同.
此时,购买A款汽车6辆,B款汽车1辆时对公司更有利.
点睛:本题考查了分式方程和一元一次不等式组的综合应用,找到合适的等量关系及不等关系是解决问题的关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、2a(a+2)(a﹣2)
【解析】
要将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方式或平方差式,若是就考虑用公式法继续分解因式.因此,
.
20、1
【解析】
先根据勾股定理求出OB的长,再在Rt△COD中求出OD的长,进而可得出结论.
【详解】
解:在Rt△ABO中,
∵AB=15m,AO=12m,
∴OB==9m.
同理,在Rt△COD中,DO==12m,
∴BD=OD﹣OB=12﹣9=1(m).
故答案是:1.
本题考查的是勾股定理的应用,在应用勾股定理解决实际问题时勾股定理与方程的结合是解决实际问题常用的方法,关键是从题中抽象出勾股定理这一数学模型,画出准确的示意图.领会数形结合的思想的应用.
21、16
【解析】
由四边形ABCD是平行四边形,可得OA=OC,又由OM⊥AC,可得AM=CM,然后由△CDM的周长为8,求得平行四边形ABCD的周长.
【详解】
∵四边形ABCD是平行四边形,
∴OA=OC,
∵OM⊥AC,
∴AM=CM,
∵△CDM的周长为8,
∴CM+DM+CD=AM+DM+CD=AD+CD=8,
∴平行四边形ABCD的周长是:2×8=16.
故答案为:16.
本题考查了平行四边形的性质与线段垂直平分线的性质,解题的关键是熟练的掌握平行四边形与线段垂直平分线的性质.
22、3或1
【解析】
过点P作PE⊥x轴,交线段AB于点E,即可求点E坐标,根据题意可求点A,点B坐标,由可求m的值.
【详解】
解:∵直线y=2x+4与x轴、y轴分别交于A、B两点,
∴当x=0时,y=4
当y=0时,x=-2
∴点A(-2,0),点B(0,4)
如图:过点P作PE⊥x轴,交线段AB于点E
∴点E横坐标为-1,
∴y=-2+4=2
∴点E(-1,2)
∴|m-2|=1
∴m=3或1
故答案为:3或1
本题考查了一次函数图象上点的坐标特征,熟练运用一次函数的性质解决问题是本题的关键.
23、6
【解析】
根据一次性购买不超过2袋,则按原价销售;若一次性购买2袋以上,则超据:2袋原价付款数+超过2袋的总钱数≤50,列出不等式求解即可得.
【详解】
解:设可以购买x(x为整数)袋蜜枣粽子.
,解得: ,则她最多能买蜜枣粽子是6袋.
故答案为:6.
此题考查了一元一次不等式的应用,关键是读懂题意,找出题目中的数量关系,列出不等式,注意x只能为整数.
二、解答题(本大题共3个小题,共30分)
24、(1)m=90,n=0.3;(2)二;(3)40%.
【解析】
(1)由总数=某组频数÷频率计算出总人数,则m等于总数减去其它组的频数,再由频率之和为1计算n;
(2)由中位数的概念分析;
(3)由获奖率=莸奖人数÷总数计算.
【详解】
(1)总人数=30÷0.15=200人,
m=200﹣30﹣60﹣20=90,
n=1﹣0.15﹣0.45﹣0.1=0.3,
如图:
(2)由于总数有200人,中位数应为第100、101名的平均数,而第一组有30人,第二组有90人,故中位数落在第二组内;
(3)获奖率==40%,
答:获奖率是40%.
本题考查了利用统计图获取信息的能力.同时考查中位数的求法:给定n个数据,按从小到大排序,如果n为奇数,位于中间的那个数就是中位数;如果n为偶数,位于中间两个数的平均数就是中位数.
25、(1) 0.2;(2)
【解析】
(1)根据题意可知客厅中心的正方形边长为 4m, 再结合图形即可求得回字型黑色边框的宽度;
(2)根据白色瓷砖区域Ⅱ的面积由四个全等的长方形及客厅中心的正方形组成,可得关于x的方程,解方程后进行讨论即可得答案.
【详解】
(1)由已知可得客厅中心的正方形边长为 4m,
由图可得边框宽度为 6 4 0.8 2 0.2 m,
即回字型黑色边框的宽度为0.2m;
(2)由已知可列方程:4x6 2x 16 26,
解得:x1= ,x2= ,
当 x=时, 2 4 9 >6,不符合实际,舍去,
∴x=.
本题考查了一元二次方程的应用,弄清题意,找出等量关系列出方程是解题的关键.
26、(1)证明见解析;(2)成立,证明见解析.
【解析】
解:(1)∵四边形ABCD是正方形.
∴∠BOE=∠AOF=90°,OB=OA,
又∵AM⊥BE,
∴∠MEA+∠MAE=90°=∠AFO+∠MAE
∴∠MEA=∠AFO,
∴Rt△BOE≌ Rt△AOF
∴OE=OF
(2)OE=OF成立
∵四边形ABCD是正方形,
∴∠BOE=∠AOF=90°,OB=OA
又∵AM⊥BE,
∴∠F+∠MBF=90°=∠E+∠OBE
又∵∠MBF=∠OBE
∴∠F=∠E
∴Rt△BOE≌Rt△AOF
∴OE=OF
题号
一
二
三
四
五
总分
得分
批阅人
决赛成绩/分
人数
成绩
甲
乙
丙
丁
平均分(单位:米)
6.0
6.1
5.5
4.6
方差
0.8
0.2
0.3
0.1
摄氏温度(℃)
…
0
10
…
华氏温度(℉)
…
32
50
…
甲
10
6
10
6
8
乙
7
9
7
8
9
2024年广西贵港市覃塘区九上数学开学达标检测模拟试题【含答案】: 这是一份2024年广西贵港市覃塘区九上数学开学达标检测模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024年甘肃省张掖市数学九上开学达标检测模拟试题【含答案】: 这是一份2024年甘肃省张掖市数学九上开学达标检测模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024年甘肃省金昌市名校九上数学开学达标检测模拟试题【含答案】: 这是一份2024年甘肃省金昌市名校九上数学开学达标检测模拟试题【含答案】,共18页。试卷主要包含了选择题,解答题等内容,欢迎下载使用。