2024年广西壮族自治区北海市数学九上开学达标检测模拟试题【含答案】
展开
这是一份2024年广西壮族自治区北海市数学九上开学达标检测模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)下列事件中,属于必然事件的是( )
A.某校初二年级共有480人,则至少有两人的生日是同一天
B.经过路口,恰好遇到红灯
C.打开电视,正在播放动画片
D.抛一枚硬币,正面朝上
2、(4分)下列各式不能用公式法分解因式的是( )
A.B.
C.D.
3、(4分)在中,斜边,则
A.10B.20C.50D.100
4、(4分)若三角形的各边长分别是8cm、10cm和16cm,则以各边中点为顶点的三角形的周长为( )
A.34cmB.30cmC.29cmD.17cm
5、(4分)若关于x的方程的解为负数,则m的取值范围是( )
A.B.C.D.
6、(4分)某学校组织学生进行社会主义核心价值观的知识竞赛,进入决赛的共有名学生,他们的决赛成绩如下表所示:
那么名学生决赛成绩的众数和中位数分别是( )
A.,B.,C.,D.,
7、(4分)已知不等式组的解集如图所示(原点未标出,数轴的单位长度为1),则 的值为( )
A.4B.3C.2D.1
8、(4分)某跳远队准备从甲、乙、丙、丁4名运动员中选取成绩好且稳定的一名选手参赛,经测试,他们的成绩如下表,综合分析应选( )
A.甲B.乙C.丙D.丁
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)在Rt△ABC中,∠C=90°,AC=5,BC=12,则连结两条直角边中点的线段长为_______.
10、(4分)合作小组的4位同学在课桌旁讨论问题,学生A的座位如图所示,学生B,C,D随机坐到其他三个座位上,则B坐在2号座位的概率是 .
11、(4分)当_____________时,在实数范围内有意义.
12、(4分)如图,在平面直角坐标系中,OAB是边长为4的等边三角形,OD是AB边上的高,点P是OD上的一个动点,若点C的坐标是,则PA+PC的最小值是_________________.
13、(4分)如图所示,平行四边形中,点在边上,以为折痕,将向上翻折,点正好落在上的处,若的周长为8,的周长为22,则的长为__________.
三、解答题(本大题共5个小题,共48分)
14、(12分)世界上大部分国家都使用摄氏温度(℃),但美国,英国等国家的天气预报都使用华氏温度(℉),两种计量之间有如下对应:
已知华氏温度y(℉)是摄氏温度x(℃)的一次函数.
求该一次函数的解析式;
当华氏温度14℉时,求其所对应的摄氏温度.
15、(8分)某商场销售A,B两款书包,己知A,B两款书包的进货价格分别为每个30元、50元,商场用3600元的资金购进A,B两款书包共100个.
(1)求A,B两款书包分别购进多少个?
(2)市场调查发现,B款书包每天的销售量y(个)与销售单价x(元)有如下关系:y=-x+90(60≤x≤90).设B款书包每天的销售利润为w元,当B款书包的销售单价为多少元时,商场每天B款书包的销售利润最大?最大利润是多少元?
16、(8分)如图,在平行四边形 中,、 的平分线 分别与线段 交于点 , 与 交于点 .
(1) 求证:,;
(2) 若 ,,,求 和 的长度.
17、(10分)某篮球队对队员进行定点投篮测试,每人每天投篮10次,现对甲、乙两名队员在五天中进球数(单位:个)进行统计,结果如下:
经过计算,甲进球的平均数为8,方差为3.2.
(1)求乙进球的平均数和方差;
(2)如果综合考虑平均成绩和成绩稳定性两方面的因素,从甲、乙两名队员中选出一人去参加定点投篮比赛,应选谁?为什么?
18、(10分)某汽车销售公司经销某品牌A款汽车,随着汽车的普及,其价格也在不断下降.今年5月份A款汽车的售价比去年同期每辆降价1万元,如果卖出相同数量的A款汽车,去年销售额为100万元,今年销售额只有90万元.
(1)今年5月份A款汽车每辆售价多少万元?
(2)为了增加收入,汽车销售公司决定再经销同品牌的B款汽车,已知A款汽车每辆进价为7.5万元,B款汽车每辆进价为6万元,公司预计用不多于105万元且不少于99万元的资金购进这两款汽车共15辆,有几种进货方案?
(3)如果B款汽车每辆售价为8万元,为打开B款汽车的销路,公司决定每售出一辆B款汽车,返还顾客现金a万元,要使(2)中所有的方案获利相同,a值应是多少?此时,哪种方案对公司更有利?
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)分解因式:2a3﹣8a=________.
20、(4分)如图,一架15m长的梯子AB斜靠在一竖直的墙OA上,这时梯子的顶端A离地面距离OA为12m,如果梯子顶端A沿墙下滑3m至C点,那么梯子底端B向外移至D点,则BD的长为___m.
21、(4分)如图,ABCD的对角线相交于点O,且ADCD,过点O作OMAC,交AD于点M.如果CDM的周长为8,那么ABCD的周长是__.
22、(4分)已知直线y=2x+4与x轴、y轴分别交于A、B两点,点P(-1,m)为平面直角坐标系内一动点,若△ABP面积为1,则m的值为______.
23、(4分) “端午节”前,商场为促销定价为10元每袋的蜜枣粽子,采取如下方式优惠销售:若一次性购买不超过2袋,则按原价销售;若一次性购买2袋以上,则超过部分按原价的七折付款.张阿姨现有50元钱,那么她最多能买蜜枣粽子_____袋.
二、解答题(本大题共3个小题,共30分)
24、(8分)某中学举行了一次“世博”知识竞赛.赛后抽取部分参赛同学的成绩进行整理,并制作成图表如下:
请根据以上图表提供的信息,解答下列问题:
(1)写出表格中m和n所表示的数:m= ,n= ,并补全频数分布直方图;
(2)抽取部分参赛同学的成绩的中位数落在第 组;
(3)如果比赛成绩80分以上(含80分)可以获得奖励,那么获奖率是多少?
25、(10分)小明家准备给边长为6m的正方形客厅用黑色和白色两种瓷砖铺设,如图所示:①黑色瓷砖区域Ⅰ:位于四个角的边长相同的小正方形及宽度相等的回字型边框(阴影部分),②白色瓷砖区域Ⅱ:四个全等的长方形及客厅中心的正方形(空白部分).设四个角上的小正方形的边长为x(m).
(1)当x=0.8时,若客厅中心的正方形瓷砖铺设的面积为16m2,求回字型黑色边框的宽度;
(2)若客厅中心的正方形边长为4m,白色瓷砖区域Ⅱ的总面积为26m2,求x的值.
26、(12分)如图l,已知正方形ABCD的对角线AC、BD相交于点O,E是AC上一点,连结EB,过点A作AMBE,垂足为M,AM交BD于点F.
(1)求证:OE=OF;
(2)如图2,若点E在AC的延长线上,AMBE于点M,交DB的延长线于点F,其它条件不变,则结论“OE=OF”还成立吗.如果成立,请给出证明;如果不成立,请说明理由.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、A
【解析】A. 某校初二年级共有480人,则至少有两人的生日是同一天;属于必然事件;
B. 经过路口,恰好遇到红灯;属于随机事件;
C. 打开电视,正在播放动画片;属于随机事件;
D. 抛一枚硬币,正面朝上;属于随机事件。
故选A.
2、C
【解析】
根据公式法有平方差公式、完全平方公式,可得答案.
【详解】
A、x2-9,可用平方差公式,故A能用公式法分解因式;
B、-a2+6ab-9 b2能用完全平方公式,故B能用公式法分解因式;
C、-x2-y2不能用平方差公式分解因式,故C正确;
D、x2-1可用平方差公式,故D能用公式法分解因式;
故选C.
本题考查了因式分解,熟记平方差公式、完全平方公式是解题关键.
3、D
【解析】
根据勾股定理计算即可.
【详解】
在中,,
,
故选:D.
本题考查勾股定理,解题的关键是记住在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.
4、D
【解析】
根据三角形中位线定理分别求出DE、EF、DF,根据三角形的周长公式计算即可.
【详解】
解:
∵D、E分别为AB、BC的中点,
∴DE=AC=5,
同理,DF=BC=8,FE=AB=4,
∴△DEF的周长=4+5+8=17(cm),
故选D.
本题考查的是三角形中位线定理,三角形的中位线平行于第三边,并且等于第三边的一半.
5、B
【解析】
先把m当作已知条件求出x的值,再根据x的值是负数列出关于m的不等式,求出m的取值范围即可.
【详解】
解:∵1x-m=1+x,
∴x=,
∵关于x的方程1x-m=1+x的解是负数,
∴<0,
解得m<-1.
故选:B.
本题考查的是解一元一次不等式,熟知不等式的基本性质是解答此题的关键.
6、B
【解析】
根据众数的定义,找到该组数据中出现次数最多的数即为众数;根据中位数定义,将该组数据按从小到大依次排列,处于中间位置的两个数的平均数即为中位数.
【详解】
∵85分的有8人,人数最多,
∴众数为85分;
∵处于中间位置的数为第10、11两个数为85分,90分,
∴中位数为87.5分.
故选B.
本题考查了众数与中位数的意义,该组数据中出现次数最多的数为众数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,解决问题时如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.
7、A
【解析】
首先解不等式组,然后即可判定的值.
【详解】
,解得
,解得
由数轴,得
故选:A.
此题主要考查根据不等式组的解集求参数的值,熟练掌握,即可解题.
8、B
【解析】
根据平均数与方差的性质即可判断.
【详解】
∵4位运动员的平均分乙最高,甲成绩也很好,但是乙的方差较小,故选乙
故选B.
此题主要考查利用平均数、方差作决策,解题的关键是熟知平均数、方差的性质.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、6.5
【解析】
试题分析:依题意作图可知EF为Rt△ABC中位线,则EF=AB.在Rt△ABC中AB=
所以EF=6.5
考点:中位线定理
点评:本题难度较低,主要考查学生对三角形中位线定理知识点的掌握.
10、.
【解析】
根据概率的求法,找准两点:①全部等可能情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.因此,
∵坐到1,2,3号的坐法共有 6 种方法:BCD、BDC、CBD、CDB、DBC、DCB,其中有 2 种方法(CBD、DBC)B坐在2号座位,
∴B坐在2号座位的概率是.
11、a≥1
【解析】
根据二次根式有意义的条件可得a-1≥0,再解不等式即可.
【详解】
由题意得:a-1≥0,
解得:a≥1,
故答案为: a≥1.
此题主要考查了二次根式有意义的条件,关键是掌握二次根式中的被开方数是非负数.
12、
【解析】
由题意知,点A与点B关于直线OD对称,连接BC,则BC的长即为PC+AP的最小值,过点B作BN⊥y轴,垂足为N,过B作BM⊥x轴于M,求出BN、CN的长,然后利用勾股定理进行求解即可.
【详解】
由题意知,点A与点B关于直线OD对称,连接BC,则BC的长即为PC+AP的最小值,
过点B作BN⊥y轴,垂足为N,过B作BM⊥x轴于M,则四边形OMBN是矩形,
∵△ABO是等边三角形,
∴OM=AO=×4=2,∴BN=OM=2,
在Rt△OBM中,BM===2,
∴ON=BM=2,
∵C,
∴CN=ON+OC=2+=3,
在Rt△BNC中,BC=,
即PC+AP的最小值为,
故答案为.
本题考查了轴对称的性质,最短路径问题,勾股定理,等边三角形的性质等,正确添加辅助线,确定出最小值是解题的关键.
13、1.
【解析】
依据△FDE的周长为8,△FCB的周长为22,即可得出DF+AD=8,FC+CB+AB=22,进而得到平行四边形ABCD的周长=8+22=30,可得AB+BC=BF+BC=15,再根据△FCB的周长=FC+CB+BF=22,即可得到CF=22-15=1.
【详解】
解:由折叠可得,EF=AE,BF=AB.
∵△FDE的周长为8,△FCB的周长为22,
∴DF+AD=8,FC+CB+AB=22,
∴平行四边形ABCD的周长=8+22=30,
∴AB+BC=BF+BC=15,
又∵△FCB的周长=FC+CB+BF=22,
∴CF=22-15=1,
故答案为:1.
本题考查了平行四边形的性质及图形的翻折问题,折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变.
三、解答题(本大题共5个小题,共48分)
14、(1)y=1.8x+1;(2)华氏温度14℉所对应的摄氏温度是-2℃.
【解析】
分析:(1)设y=kx+b(k≠0),利用图中的两对数,用待定系数法求解即可;
(2)把 y=14代入(1)中求得的函数关系式求出x的值即可.
详解:(1)设一次函数表达式为y=kx+b(k≠0).
由题意,得,解得.
∴一次函数的表达式为y=1.8x+1.
(2)当y=14时,代入得14=1.8x+1,解得x=-2.
∴华氏温度14℉所对应的摄氏温度是-2℃.
点睛:本题考查了一次函数的应用,熟练掌握待定系数法是解答本题的关键. 利用待定系数法求函数解析式的一般步骤:①先设出函数解析式的一般形式;②将已知点的坐标代入所设的解析式,得到关于待定系数的方程或方程组;③解方程或方程组,求出待定系数的值,进而写出函数解析式.
15、(1)A,B两款书包分别购进70和30个;(2)B款书包的销售单价为70元时B款书包的销售利润最大,最大利润是400元
【解析】
(1)此题的等量关系为:购进A款书包的数量+购进B款书包的数量=100;购进A款书包的数量×进价+购进B款书包的数量×进价=3600,设未知数,列方程求解即可.
(2)根据B款书包每天的销售利润=(B款书包的售价-B款书包的进价)×销售量y,列出w与x的函数解析式,再利用二次函数的性质,即可解答.
【详解】
(1)解: 设购进A款书包x个,则B款为(100−x)个,
由题意得:30x+50(100−x)=3600,
解之:x=70,
∴100-x=100-70=30
答:A,B两款书包分别购进70和30个.
(2)解: 由题意得:w=y(x−50)=−(x−50)(x−90)=-x2+140x-4500,
∵−1
相关试卷
这是一份2024年广西贵港市覃塘区九上数学开学达标检测模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024年甘肃省张掖市数学九上开学达标检测模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024年甘肃省金昌市名校九上数学开学达标检测模拟试题【含答案】,共18页。试卷主要包含了选择题,解答题等内容,欢迎下载使用。