2025届广东省统考数学九年级第一学期开学经典试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)已知a,b,c是△ABC的三边长,且满足关系,则△ABC的形状为( )
A.直角三角形B.等腰三角形C.等腰直角三角形D.等边三角形
2、(4分)若a使得关于x的分式方程 有正整数解。且函数y=ax−2x−3与y=2x−1的图象有交点,则满足条件的所有整数a的个数为( )
A.1B.2C.3D.4
3、(4分)若分式的值为0,则的值是( )
A.B.C.D.
4、(4分)一次函数y=kx-k(k<0)的图象大致是( )
A.B.C.D.
5、(4分)已知点(-2, ),(-1, ),(1, )都在直线y=-3x+b上,则、、的值大小关系是( )
A.>>B.>>C.<
A.AB=ADB.∠BAC=∠DACC.∠BAC=∠ABDD.AC⊥BD
7、(4分)下列调查,比较适合使用普查方式的是( )
A.某品牌灯泡使用寿命B.长江水质情况
C.中秋节期间市场上的月饼质量情况D.乘坐地铁的安检
8、(4分)已知,,则的值为( )
A.-2B.1C.-1D.2
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)合作小组的4位同学在课桌旁讨论问题,学生A的座位如图所示,学生B,C,D随机坐到其他三个座位上,则B坐在2号座位的概率是 .
10、(4分)若有意义,则m能取的最小整数值是__.
11、(4分)若是一个完全平方式,则______.
12、(4分)若甲、乙、丙、丁四个同学一学期4次数学测试的平均成绩恰好都是85分,方差分别为s甲2=0.80,s乙2=1.31,s丙2=1.72,s丁2=0.42,则成绩最稳定的同学是______.
13、(4分)直线中,y随的减小而_______,图象经过______象限.
三、解答题(本大题共5个小题,共48分)
14、(12分)对于平面直角坐标系xOy中的点P和正方形给出如下定义:若正方形的对角线交于点O,四条边分别和坐标轴平行,我们称该正方形为原点正方形,当原点正方形上存在点Q,满足PQ≤1时,称点P为原点正方形的友好点.
(1)当原点正方形边长为4时,
①在点P1(0,0),P2(-1,1),P3(3,2)中,原点正方形的友好点是__________;
②点P在直线y=x的图象上,若点P为原点正方形的友好点,求点P横坐标的取值范围;
(2)乙次函数y=-x+2的图象分别与x轴,y轴交于点A,B,若线段AB上存在原点正方形的友好点,直接写出原点正方形边长a的取值范围.
15、(8分)某批乒乓球的质量检验结果如下:
(1)填写表中的空格;
(2)画出这批乒乓球优等品频率的折线统计图;
(3)这批乒乓球优等品概率的估计值是多少?
16、(8分)如图,在中,,是的中点,是的中点,过点作交的延长线于点,连接.
(1)写出四边形的形状,并证明:
(2)若四边形的面积为12,,求.
17、(10分)如图,一次函数y=﹣x+4的图象与x轴y轴分别交于点A、点B,与正比例函数y=x的图象交于点C,将点C向右平移1个单位,再向下平移6个单位得点D.
(1)求△OAB的周长;
(2)求经过D点的反比例函数的解析式;
18、(10分)如图,将正方形ABCD折叠,使点C与点D重合于正方形内点P处,折痕分别为AF、BE,如果正方形ABCD的边长是2,那么△EPF的面积是_____.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,,以点为圆心, 任意长为半径画弧, 交于点,交于点,再分别以点、为圆心,大于长为半径画弧交于点,过点作射线,在射线上截取,过点作, 垂足为点, 则的长为________________.
20、(4分)小数0.00002l用科学记数法表示为_____.
21、(4分)已知,那么________.
22、(4分)已知x=+5,则代数式(x﹣3)2﹣4(x﹣3)+4的值是_____.
23、(4分)若关于x的方程x2+mx-3=0有一根是1,则它的另一根为________.
二、解答题(本大题共3个小题,共30分)
24、(8分)用圆规、直尺作图,不写作法,但要保留作图痕迹.
已知:四边形ABCD
求作:点P,使∠PBC=∠PCB,且点P到AD和DC的距离相等.
25、(10分)如图,直线分别与轴、轴交于点,;直线分别与轴交于点,与直线交于点,已知关于的不等式的解集是.
(1)分别求出,,的值;
(2)求.
26、(12分)数学活动课上,老师提出问题:如图,有一张长4dm,宽1dm的长方形纸板,在纸板的四个角裁去四个相同的小正方形,然后把四边折起来,做成一个无盖的盒子,问小正方形的边长为多少时,盒子的体积最大.
下面是探究过程,请补充完整:
(1)设小正方形的边长为x dm,体积为y dm1,根据长方体的体积公式得到y和x的关系式: ;
(2)确定自变量x的取值范围是 ;
(1)列出y与x的几组对应值.
(4)在下面的平面直角坐标系中,描出补全后的表中各对对应值为坐标的点,并画出该函数的图象如下图;
结合画出的函数图象,解决问题:
当小正方形的边长约为 dm时,(保留1位小数),盒子的体积最大,最大值约为 dm1.(保留1位小数)
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
试题解析:∵+|a−b|=0,
∴c2-a2-b2=0,a-b=0,
解得:a2+b2=c2,a=b,
∴△ABC的形状为等腰直角三角形;
故选C.
【点睛】此题主要考查了勾股定理逆定理以及非负数的性质,关键是掌握勾股定理的逆定理:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.
2、D
【解析】
先解分式方程,求得a的值,再由函数图象有交点求得a的取值范围,则可求得a的值,可求得答案.
【详解】
解分式方程可得x=4−,
∵a使得关于x的分式方程有正整数解,
∴a的值为0、2、4、6,
联立y=ax−2x−3与y=2x−1,消去y,整理可得ax−4x−2=0,
由函数图象有交点,可知方程ax−4x−2=0有实数根,
当a=0时,方程有实数解,满足条件,
当a≠0时,则有△⩾0,即16+8a⩾0,解得a⩾−2且a≠0,
∴满足条件的a的值为0、2、4、6,共4个,
故选D.
此题考查分式方程的解,二次函数的性质,一次函数的性质,解题关键在于求得a的值.
3、A
【解析】
解:根据分式为0的条件,要使分式的值为0,必须.
解得
故选A.
4、A
【解析】
试题分析:首先根据k的取值范围,进而确定﹣k>0,然后再确定图象所在象限即可.
解:∵k<0,
∴﹣k>0,
∴一次函数y=kx﹣k的图象经过第一、二、四象限,
故选A.
考点:一次函数的图象.
5、B
【解析】
先根据直线y=-1x+b判断出函数的图象特征,再根据各点横坐标的大小进行判断即可.
【详解】
∵直线y=-1x+b,k=-1<0,
∴y随x的增大而减小,
又∵-2<-1<1,
∴y1>y2>y1.
故选B.
本题考查的是一次函数的图像与性质,即一次函数y=kx+b(k≠0)中,当k>0,y随x的增大而增大;当k<0,y随x的增大而减小.
6、C
【解析】
根据菱形的判定定理分别进行分析即可.
【详解】
A、由邻边相等的平行四边形是菱形,A选项可以判断这个平行四边形是菱形
B、由AB//CD可得∠BAC=∠DCA,及∠BAC=∠DAC可得∠DAC=∠DCA可得AD=CD由邻边相等的平行四边形是菱形,B选项可以判断这个平行四边形是菱形
C、由∠BAC=∠ABD可得OA=OB,则AC=BD,可得这个四边形是矩形,C选项不可以判断这个平行四边形是菱形
D、由对角线互相垂直的平行四边形是菱形,D选项可以判断这个平行四边形是菱形
故答案选C
本题考查了菱形的判定定理,熟练掌握菱形的判定定理是解题的关键.
7、D
【解析】
一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.
【详解】
A、某品牌灯泡使用寿命,具有破坏性,适宜于抽样调查,故A错误;
B、长江水质情况,所费人力、物力和时间较多,适宜于抽样调查,故B错误;
C、中秋节期间市场上的月饼质量情况,适宜于抽样调查,故C错误;
D、乘坐地铁的安检,适宜于全面调查,故D正确;
故选:D.
本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.
8、D
【解析】
首先将所求式子进行因式分解,然后代入即可得解.
【详解】
将,,代入,得
上式=,
故选:D.
此题主要考查利用完全平方式进行因式分解求值,熟练掌握,即可解题.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、.
【解析】
根据概率的求法,找准两点:①全部等可能情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.因此,
∵坐到1,2,3号的坐法共有 6 种方法:BCD、BDC、CBD、CDB、DBC、DCB,其中有 2 种方法(CBD、DBC)B坐在2号座位,
∴B坐在2号座位的概率是.
10、1
【解析】
根据二次根式的意义,先求m的取值范围,再在范围内求m的最小整数值.
【详解】
∵若有意义
∴3m﹣1≥0,解得m≥
故m能取的最小整数值是1
本题考查了二次根式的意义以及不等式的特殊解等相关问题.
11、
【解析】
根据完全平方公式的结构特征进行判断即可确定出m的值.
【详解】
∵x2+2mx+1是一个完全平方式,
∴m=±1,
故答案为:±1.
本题考查了完全平方式,熟练掌握完全平方式的结构特征是解题的关键. 本题易错点在于:是加上或减去两数乘积的2倍,在此有正负两种情况,要全面分析,避免漏解.
12、丁
【解析】
首先比较出S甲2、S乙2、S丙2、S丁2的大小关系,然后根据方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越,小,稳定性越好,判断出成绩最稳定的同学是谁即可.
【详解】
∵S甲2=0.80,S乙2=1.31,S丙2=1.72,S丁2=0.42,
∴S丁2<S甲2<S乙2<S丙2,
∴成绩最稳定的是丁,
故答案为:丁.
此题主要考查了方差的含义和性质的应用,要熟练掌握,解答此题的关键是要明确:方差是反映一组数据的波动大小的一个量,方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.
13、减小 第一、三、四
【解析】
根据函数解析式和一次函数的性质可以解答本题.
【详解】
解:直线,,
随的减小而减小,函数图象经过第一、三、四象限,
故答案为:减小,第一、三、四.
本题考查一次函数的性质,解答本题的关键是明确题意,利用一次函数的性质解答.
三、解答题(本大题共5个小题,共48分)
14、(1)①P2,P3 ,②1≤x≤或≤x≤-1;(2)2-≤a≤1.
【解析】
(1)由已知结合图象,找到点P所在的区域;
(2)分别求出点A与B的坐标,由线段AB的位置,通过做圆确定正方形的位置.
【详解】
解:(1)①∵原点正方形边长为4,
当P1(0,0)时,正方形上与P1的最小距离是2,故不存在Q使P1Q≤1;
当P2(-1,1)时,存在Q(-2,1),使P2Q≤1;
当P3(3,2)时,存在Q(2,2),使P3Q≤1;
故答案为P₂、P₃;
②如图所示:阴影部分就是原点正方形友好点P的范围,
由计算可得,点P横坐标的取值范围是:
1≤x≤2+或-2-≤x≤-1;
(2)一次函数y=-x+2的图象分别与x轴,y轴交于点A,B,
∴A(0,2),B(2,0),
∵线段AB上存在原点正方形的友好点,
如图所示:
原点正方形边长a的取值范围2-≤a≤1.
本题考查一次函数的性质,新定义;能够将新定义的内容转化为线段,圆,正方形之间的关系,并能准确画出图形是解题的关键.
15、(1)见解析;(2)见解析;(3)这批乒乓球优等品概率的估计值是0.90.
【解析】
(1)根据表格中数据计算填表即可;
(2)根据表格中优等品频率画折线统计图即可;
(3)利于频率估计概率求解即可.
【详解】
解:(1)176÷200=0.88,364÷400=0.91,450÷500=0.90,
填表如下:
(2)折线统计图如图:
(3)由表中数据可判断优等品频率在0.90左右摆动,于是利于频率估计概率可得这批乒乓球优等品概率的估计值是0.90.
本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.也考查了统计表和折线统计图.
16、(1)详见解析;(2)
【解析】
(1)由“AAS”可证△AEF≌△DEC,可得AF=CD,由直角三角形的性质可得AD=BD=CD,由菱形的判定是可证ADBF是菱形.
(2)由题意可得S△ABC=S四边形ADBF=12,可得AC的长,由勾股定理可求BC的长.
【详解】
解:解:(1)四边形ADBF是菱形,
理由如下:∵E是AD的中点,
∴AE=DE,
∵AF∥BC
∴∠AFE=∠DCE,且∠AEF=∠CED,AE=DE
∴△AEF≌△DEC(AAS)
∴AF=CD,
∵点D是BC的中点
∴BD=DC
∴AF=BD,且AF∥CD
∴四边形ADBF是平行四边形,
∵∠BAC=90°,D是BC的中点,
∴AD=BD,
∴平行四边形ADBF是菱形
(2)∵四边形ADBF的面积为12,
∴S△ABD=6
∵D是BC的中点
∴S△ABC=12=×AB×AC
∴12=×4×AC
∴AC=6,
∴BC=.
本题考查菱形的性质及判定,利用全等三角形的性质证得AF=CD是解题的关键,注意菱形面积公式的应用.
17、(1)12+4(2)y=-
【解析】
(1)根据题意可求A,B坐标,勾股定理可求AB长度,即可求△OAB的周长.
(2)把两个函数关系式联立成方程组求解,即为C点坐标,通过平移可求D点坐标,用待定系数法可求反比例函数解析式.
【详解】
(1)∵一次函数y=﹣x+4的图象与x轴y轴分别交于点A、点B,
∴A(8,0),B(0,4)
∴OA=8,OB=4
在Rr△AOB中,AB==4,
∴△OAB的周长=4+8+4=12+4
(2)∵,
∴
∴C点坐标为(2,3)
∵将点C向右平移1个单位,再向下平移6个单位得点D.
∴D(3,﹣3)
设过D点的反比例函数解析式y=,
∴k=3×(﹣3)=﹣9
∴反比例函数解析式y=.
本题考查了反比例函数与一次函数的交点问题,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.
18、
【解析】
过P作PH⊥DC于H,交AB于G,由正方形的性质得到AD=AB=BC=DC=2;∠D=∠C=90°;再根据折叠的性质有PA=PB=2,∠FPA=∠EPB=90°,可判断△PAB为等边三角形,利用等边三角形的性质得到∠APB=60°,,于是∠EPF=10°,PH=HG﹣PG=2﹣,得∠HEP=30°,然后根据含30°的直角三角形三边可求出HE,得到EF,最后利用三角形的面积公式计算即可.
【详解】
解:过P作PH⊥DC于H,交AB于G,如图,
则PG⊥AB,
∵四边形ABCD为正方形,
∴AD=AB=BC=DC=2;∠D=∠C=90°,
又∵将正方形ABCD折叠,使点C与点D重合于形内点P处,
∴PA=PB=2,∠FPA=∠EPB=90°,
∴△PAB为等边三角形,
∴∠APB=60°,PG=AB=,
∴∠EPF=10°,PH=HG﹣PG=2﹣,
∴∠HEP=30°,
∴HE=PH=(2﹣)=2﹣3,
∴EF=2HE=4﹣6,
∴△EPF的面积=FE•PH=(2﹣)(4﹣6)
=7﹣1.
故答案为7﹣1.
本题考查了折叠的性质:折叠前后的两图形全等,即对应角相等,对应线段相等.也考查了正方形和等边三角形的性质以及含30°的直角三角形三边的关系.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、5cm
【解析】
根据角平分线的性质、RT△中,30°所对的直角边等于斜边的一般,本题得以解决.
【详解】
解:由题意可得,
OC为∠MON的角平分线,
∵,OC平分∠AOB,∴∠MOP=∠MON=30°,
∵,∴∠ODP=90°,
∵OP=10,
∴PD=OP=5,
故答案为:5cm.
本题考查了角平分线的性质及直角三角形的性质,解题的关键是掌握直角三角形的性质.
20、2.1×10﹣1
【解析】
绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.
【详解】
解:小数0.00002l用科学记数法表示为2.1×10-1.
故答案为2.1×10-1.
本题考查了用科学记数法表示较小的数,一般形式为a×,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.
21、
【解析】
直接利用已知得出,进而代入求出答案.
【详解】
解:∵,
∴,
∴.
故答案为:.
此题主要考查了代数式的化简,正确用b代替a是解题关键.
22、1
【解析】
将代入原式=(x-3-2)2=(x-1)2计算可得.
【详解】
当时,
原式
,
故答案为1.
本题主要考查二次根式的化简求值,解题的关键是熟练掌握二次根式的混合运算顺序和运算法则及完全平方公式.
23、-1
【解析】
设方程x2+mx-1=0的两根为x1、x2,根据根与系数的关系可得出x1•x2=﹣1,结合x1=1即可求出x2,此题得解.
【详解】
解:设方程x2+mx-1=0的两根为x1、x2,则:x1•x2=﹣1.
∵x1=1,∴x2=﹣1.
故答案为:﹣1.
本题考查了根与系数的关系,熟练掌握两根之积等于是解题的关键.
二、解答题(本大题共3个小题,共30分)
24、图形见解析.
【解析】
作∠ADC的平分线和BC的垂直平分线便可.
【详解】
解:如图所示,点P即为所求.
考查线段垂直平分线和角平分线的作图运用.
25、(1),,;(2)
【解析】
(1)首先利用待定系数法确定直线的解析式,然后根据关于x的不等式的解集是得到点D的權坐标为,再将x=代入y=x+3,得:;将x=代入y=1-m求得m=1即可
(2)先确定直线与x轴的交点坐标,然后利用三角形的面积公式计算即可
【详解】
解:(1)∵直线分别与轴、轴交于点,,
,
解得:,,
∵关于的不等式的解集是,
∴点的横坐标为,
将代入,得:,
将,代入,
解得:;
(2)对于,令,得:,
∴点的坐标为,
∴.
本题考查了一次函数与一元一次不等式的关系及数形结合思想的应用,解决此类问题关键是仔细观察图形,注意几个关键点(交点、原点等),做到数形结合。
26、(1) (或);(2);(1)m=1,n=2;(4)~都行,1~1.1都行.
【解析】
根据题意,列出y与x的函数关系式,根据盒子长宽高值为正数,求出自变量取值范围;利用图象求出盒子最大体积.
【详解】
(1)y=x(4−2x)(1−2x)=4x−14x+12x
故答案为:y=4x−14x+12x
(2)由已知
解得:0
(4)根据图象,当x=0.55dm时,盒子的体积最大,最大值约为1.01dm1
故答案为:~都行,1~1.1都行
此题考查函数的表示方法,函数自变量的取值范围,函数图像,解题关键在于看懂图中数据.
题号
一
二
三
四
五
总分
得分
批阅人
抽取的乒乓球数n
50
100
150
200
350
400
450
500
优等品的频数m
40
96
126
176
322
364
405
450
优等品的频率
0.80
0.96
0.84
0.92
0.90
x/dm
…
…
y/dm1
…
1.1
2.2
2.7
m
1.0
2.8
2.5
n
1.5
0.9
…
抽取的乒乓球数n
50
100
150
200
350
400
450
500
优等品的频数m
40
96
126
176
322
364
405
450
优等品的频率
0.80
0.96
0.84
0.88
0.92
0.91
0.90
0.90
2025届广东省深圳市盐田区数学九年级第一学期开学经典模拟试题【含答案】: 这是一份2025届广东省深圳市盐田区数学九年级第一学期开学经典模拟试题【含答案】,共23页。试卷主要包含了选择题,解答题等内容,欢迎下载使用。
2025届广东省广州大附中九年级数学第一学期开学统考模拟试题【含答案】: 这是一份2025届广东省广州大附中九年级数学第一学期开学统考模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024年山东省青岛市市南区统考九年级数学第一学期开学经典模拟试题【含答案】: 这是一份2024年山东省青岛市市南区统考九年级数学第一学期开学经典模拟试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。