2024年福建省厦门外国语海沧附属学校九上数学开学考试模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)下列四个数中,大于而又小于的无理数是
A.B.C.D.
2、(4分)如图,在正方形ABCD外取一点E,连接AE、BE、DE,过A作AE的垂线交ED于点P,若AE=AP=1,PB=,下列结论:①△APD≌△AEB;②EB⊥ED;③PD=,其中正确结论的序号是( )
A.①②B.①③C.②③D.①②③
3、(4分)如图,点、、、分别是四边形边、、、的中点,则下列说法:
①若,则四边形为矩形;
②若,则四边形为菱形;
③若四边形是平行四边形,则与互相垂直平分;
④若四边形是正方形,则与互相垂直且相等.
其中正确的个数是( )
A.1B.2C.3D.4
4、(4分)下列给出的四个点中,在直线的是( )
A.B.C.D.
5、(4分)已知三角形三边长为a,b,c,如果+|b﹣8|+(c﹣10)2=0,则△ABC是( )
A.以a为斜边的直角三角形B.以b为斜边的直角三角形
C.以c为斜边的直角三角形D.不是直角三角形
6、(4分)一组数据:3,2,5,3,7,5,x,它们的众数为5,则这组数据的中位数是( )
A.2B.3C.5D.7
7、(4分)点(3,-4)到x轴的距离为 ( )
A.3 B.4 C.5 D.-4
8、(4分)若函数的图象过,则关于此函数的叙述不正确的是( )
A.y随x的增大而增大B.
C.函数图象经过原点D.函数图象过二、四象限
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如果最简二次根式与最简二次根式同类二次根式,则x=_______.
10、(4分)已知点A(a,5)与点B(-3,b)关于y轴对称,则a-b= .
11、(4分)在平面直角坐标系中,已知一次函数的图像经过,两点,若,则 .(填”>”,”<”或”=”)
12、(4分)如图,在Rt△ABC中,∠C=90°,AC=6,AB=10,点D、E、F是三边的中点,则△DEF的周长是______.
13、(4分)分解因式:x2-2x+1=__________.
三、解答题(本大题共5个小题,共48分)
14、(12分)已知坐标平面内的三个点,,,把向下平移个单位再向右平移个单位后得到.
(1)直接写出,,三个对应点、、的坐标;
(2)画出将绕点逆时针方向旋转后得到;
(3)求的面积.
15、(8分)如图,在中,,平分,垂直平分于点,若,求的长.
16、(8分)如图,AD是△ABC的边BC上的高,∠B=60°,∠C=45°,AC=6.求:
(1)AD的长;
(2)△ABC的面积.
17、(10分)按照下列要求画图并作答:
如图,已知.
画出BC边上的高线AD;
画的对顶角,使点E在AD的延长线上,,点F在CD的延长线上,,连接EF,AF;
猜想线段AF与EF的大小关系是:______;直线AC与EF的位置关系是: ______.
18、(10分)已知关于x的一元二次方程x2+mx+2n=0,其中m、n是常数.
(1)若m=4,n=2,请求出方程的根;
(2)若m=n+3,试判断该一元二次方程根的情况.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)已知、、是反比例函数的图象上的三点,且,则、、的大小关系是________________.
20、(4分)如图,点P是平面坐标系中一点,则点P到原点的距离是_____.
21、(4分)在 中,若是 的正比例函数,则常数 _____.
22、(4分)关于x的方程有增根,则m的值为_____
23、(4分)一个n边形的内角和为1080°,则n=________.
二、解答题(本大题共3个小题,共30分)
24、(8分)如果关于x的方程1+=的解,也是不等式组的解,求m的取值范围.
25、(10分)某学校计划购买若干台电脑,现从两家商场了解到同一种型号的电脑报价均为6000元,并且多买都有一定的优惠.各商场的优惠条件如下表所示:
(1)设学校购买台电脑,选择甲商场时,所需费用为元,选择乙商场时,所需费用为元,请分别求出,与之间的关系式.
(2)什么情况下,两家商场的收费相同?什么情况下,到甲商场购买更优惠?什么情况下,到乙商场购买更优惠?
(3)现在因为急需,计划从甲乙两商场一共买入10台电脑,已知甲商场的运费为每台50元,乙商场的运费为每台60元,设总运费为元,从甲商场购买台电脑,在甲商场的库存只有4台的情况下,怎样购买,总运费最少?最少运费是多少?
26、(12分)某商店经销某种玩具,该玩具每个进价 20 元,为进行促销,商店制定如下“优惠” 方案:如果一次销售数量不超过 5 个,则每个按 50 元销售:如果一次销售数量超过 5 个,则每增加一个,所有玩具均降低 1 元销售,但单价不得低于 30 元,一次销售该玩具的单价 y(元)与销售数量 x(个)之间的函数关系如下图所示.
(1)结合图形,求出 m 的值;射线 BC 所表示的实际意义是什么;
(2)求线段 AB 满足的 y 与 x 之间的函数解析式,并直接写出自变量的取值范围;
(3)当销售 15 个时,商店的利润是多少元.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、B
【解析】
根据无理数的大概值和1,2比较大小,首先计算出每个选项的大概值.
【详解】
A 选项不是无理数;
B 是无理数且
C 是无理数但
D 是无理数但
故选B.
本题主要考查无理数的比较大小,关键在于估算结果.
2、A
【解析】
①利用同角的余角相等,易得∠EAB=∠PAD,再结合已知条件利用SAS可证两三角形全等;②利用①中的全等,可得∠APD=∠AEB,结合三角形的外角的性质,易得∠BEP=90°,即可证;③在Rt△AEP中,利用勾股定理,可求得EP、BE的长,再依据△APD≌△AEB,即可得出PD=BE,据此即可判断.
【详解】
①∵∠EAB+∠BAP=90°,∠PAD+∠BAP=90°,
∴∠EAB=∠PAD,
又∵AE=AP,AB=AD,
∴△APD≌△AEB,故①正确;
②∵△APD≌△AEB,
∴∠APD=∠AEB,
又∵∠AEB=∠AEP+∠BEP,∠APD=∠AEP+∠PAE,
∴∠BEP=∠PAE=90°,
∴EB⊥ED,故②正确;
③在Rt△AEP中,
∵AE=AP=1,
∴EP=,
又∵PB=,
∴BE=,
∵△APD≌△AEB,
∴PD=BE=,故③错误,
故选A.
本题考查了全等三角形的判定与性质、正方形的性质、三角形面积、勾股定理等,综合性质较强,有一定的难度,熟练掌握相关的性质与定理是解题的关键.
3、A
【解析】
根据三角形中位线定理、平行四边形的判定定理得到四边形EFGH是平行四边形,根据矩形、菱形、正方形的判定定理判断即可.
【详解】
解:∵E、F分别是边AB、BC的中点,
∴EF∥AC,EF=AC,
同理可知,HG∥AC,HG=AC,
∴EF∥HG,EF=HG,
∴四边形EFGH是平行四边形,
若AC=BD,则四边形EFGH是菱形,故①说法错误;
若AC⊥BD,则四边形EFGH是矩形,故②说法错误;
若四边形是平行四边形,AC与BD不一定互相垂直平分,故③说法错误;
若四边形是正方形,AC与BD互相垂直且相等,故④说法正确;
故选:A.
本题考查中点四边形、平行四边形、矩形、菱形的判定等知识,掌握三角形中位线定理、平行四边形、矩形、菱形、正方形的判定定理是解题的关键.
4、D
【解析】
只需把每个点的横坐标即x的值分别代入,计算出对应的y值,然后与对应的纵坐标比较即可.
【详解】
解:A、当时,,则不在直线上;
B、当时,,则不在直线上;
C、当时,,则不在直线上;
D、当时,,则在直线上;
故选:D.
本题考查判断点是否在直线上,知识点是:在这条直线上的各点的坐标一定适合这条直线的解析式.
5、C
【解析】
因为+|b-8|+(c-10)2=0,所以有(a-6) 2 =0, ,|c-10|=0,所以a=6,b=8,c=10,因为 a2+b2=c2 ,所以ABC的形状是直角三角形,故选B.
6、C
【解析】
分析:众数是指一组数据中出现次数最多的那个数据,一组数据可以有多个众数,也可以没有众数;中位数是指将数据按大小顺序排列起来形成一个数列,居于数列中间位置的那个数据.根据定义即可求出答案.
详解:∵众数为5, ∴x=5, ∴这组数据为:2,3,3,5,5,5,7, ∴中位数为5, 故选C.
点睛:本题主要考查的是众数和中位数的定义,属于基础题型.理解他们的定义是解题的关键.
7、B
【解析】分析:-4的绝对值即为点P到x轴的距离.
详解:∵点P到x轴的距离为其纵坐标的绝对值即|−4|=4,
∴点P到x轴的距离为4.
故选B.
点睛:本题考查了点的坐标,用到的知识点为:点到x轴的距离为点的纵坐标的绝对值.
8、A
【解析】
将(2,-3)代入一次函数解析式中,求出一次函数解析式,根据解析式得出一次函数图像与性质即可得出答案.
【详解】
将(2,-3)代入中
2k=-3,解得
∴一次函数的解析式为:
A:根据解析式可得y随x的增大而减小,故A选项正确;
B:,故B选项错误;
C:为正比例函数,图像经过原点,故C选项错误;
D:根据解析式可得函数图像经过二、四象限,故D选项错误.
故答案选择A.
本题考查了用待定系数法求一次函数解析式以及根据一次函数解析式判断函数的图像与性质.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、1
【解析】
∵最简二次根式与最简二次根式是同类二次根式,
∴x+3=1+1x,解得:x=1.当x=1时,6和是最简二次根式且是同类二次根式.
10、-1
【解析】
试题分析:因为关于y轴对称的两个点的横坐标互为相反数,纵坐标不变,又点A(a,5)与点B(-3,b)关于y轴对称,所以a=3,b=5,所以a-b=3-5=-1.
考点:关于y轴对称的点的坐标特点.
11、.
【解析】
试题分析:一次函数的增减性有两种情况:①当时,函数的值随x的值增大而增大;②当时,函数y的值随x的值增大而减小.
由题意得,函数的,故y的值随x的值增大而增大.
∵,∴.
考点:一次函数图象与系数的关系.
12、1
【解析】
先根据勾股定理求出BC,再根据三角形中位线定理求出△DEF的三边长,然后根据三角形的周长公式计算即可.
【详解】
解:在Rt△ABC中,∵∠C=90°,AC=6,AB=10,∴BC==8,
∵点D、E、F是三边的中点,∴DE=AC=3,DF=AB=5,EF=BC=4,
∴△DEF的周长=3+4+5=1.
故答案为:1.
本题考查的是勾股定理和三角形中位线定理,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.
13、(x-1)1.
【解析】
由完全平方公式可得:
故答案为.
错因分析 容易题.失分原因是:①因式分解的方法掌握不熟练;②因式分解不彻底.
三、解答题(本大题共5个小题,共48分)
14、(1)点D、E、F的坐标分别为(5,2)、(5,-2)、(2,-3);(2)见解析;(3)1.
【解析】
(1)利用点平移的坐标规律写出点D、E、F的坐标;
(2)利用网格特点和旋转的性质画出A、B的对应点A′、B′即可;
(3)利用三角形面积公式计算.
【详解】
解:(1)点D、E、F的坐标分别为(5,2)、(5,-2)、(2,-3);
(2)如图,△A'OB'为所作;
(3)△DEF的面积=×4×3=1.
故答案为:(1)点D、E、F的坐标分别为(5,2)、(5,-2)、(2,-3);(2)见解析;(3)1.
本题考查作图-平移变换、旋转变换,解题的关键是熟练掌握平移变换和旋转变换的定义、性质,并据此得到变换后的对应点.
15、的长为.
【解析】
根据角平分线的性质可得DE=CE,根据垂直平分线可得AE=BE,进而得到,设,则,根据直角三角形30°角所对直角边为斜边的一半得到关于x的方程,然后求解方程即可.
【详解】
解:设,则,
平分,,,
,
又垂直平分,
,
,
在中,,
,
,即,
解得.
即的长为.
本题主要考查角平分线的性质,垂直平分线的性质,直角三角形30°角所对直角边为斜边的一半等,解此题的关键在于熟练掌握其知识点.
16、(1)AD=3;(2)S△ABC=9+3.
【解析】
试题分析:(1)根据三角形内角和可得∠DAC=45°,根据等角对等边可得AD=CD,然后再根据勾股定理可计算出AD的长;
(2)根据三角形内角和可得∠BAD=30°,再根据直角三角形的性质可得AB=2BD,然后利用勾股定理计算出BD的长,进而可得BC的长,然后利用三角形的面积公式计算即可.
解:(1)∵∠C=45°,AD是△ABC的边BC上的高,∴∠DAC=45°,∴AD=CD.
∵AC2=AD2+CD2,∴62=2AD2,∴AD=3
(2)在Rt△ADB中,∵∠B=60°,∴∠BAD=30°,∴AB=2BD.
∵AB2=BD2+AD2,∴(2BD)2=BD2+AD2,BD=.
∴S△ABC=BC·AD= (BD+DC)·AD=×(+3)×3=9+3.
17、画图见解析;画图见解析;;.
【解析】
(1)直接利用钝角三角形高线的作法得出答案;
(2)利用圆规与直尺截取得出E,F位置进而得出答案;
(3)利用已知线段和角的度数利用全等三角形的判定与性质分析得出答案.
【详解】
如图所示:高线AD即为所求;
如图所示:
猜想线段AF与EF的大小关系是:;
理由:在和中
,
≌,
;
直线AC与EF的位置关系是:.
理由:在和中
,
≌,
,
.
故答案为;.
本题考查了作图,三角形全等的判定与性质等,正确作出钝角三角形的高线是解题关键.
18、(1)x1=x2=﹣2;(2)当m=n+3时,该一元二次方程有两个不相等的实数根.
【解析】
(1)把m、n的值代入方程,求出方程的解即可;
(2)先把m=n+3代入方程,再求出△的值,再判断即可.
【详解】
(1)把m=4,n=2代入方程x2+mx+2n=0得:x2+4x+4=0,
解得:x1=x2=﹣2;
即方程的根是x1=x2=﹣2;
(2)∵m=n+3,方程为x2+mx+2n=0,
∴x2+(n+3)x+2n=0,
△=(n+3)2﹣4×1×2n=n2﹣2n+9=(n﹣1)2+8,
∵不论m为何值,(n﹣1)2+8>0,
∴△>0,
所以当m=n+3时,该一元二次方程有两个不相等的实数根.
本题考查了一元二次方程的解法,以及一元二次方程根的判别式,当∆>0时,一元二次方程有两个不相等的实数根;当∆=0时,一元二次方程有两个相等的实数根;当∆<0时,一元二次方程没有实数根.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、y2
解:反比例函数当x<0时为减函数且y<0,由x1
综上所述可得y2
【解析】
连接PO,在直角坐标系中,根据点P的坐标是(),可知P的横坐标为,纵坐标为,然后利用勾股定理即可求解.
【详解】
连接PO,∵点P的坐标是(),
∴点P到原点的距离=
=1.
故答案为:1
此题主要考查学生对勾股定理、坐标与图形性质的理解和掌握,解答此题的关键是明确点P的横坐标为,纵坐标为.
21、2
【解析】
试题分析:本题主要考查的就是正比例函数的定义,一般地,形如y=kx(k是常数,k≠0)的函数叫做正比例函数,由此可得a﹣2=0,解出即可.
考点:正比例函数的定义.
22、-1
【解析】
增根是分式方程化为整式方程后产生的使分式方程的分母为0的根.把增根代入化为整式方程的方程即可求出m的值.
【详解】
方程两边都乘(x−3),得2−x−m=2(x−3)
∵原方程增根为x=3,
∴把x=3代入整式方程,得2−3−m=0,
解得m=−1.
故答案为:−1.
此题考查了分式方程的增根,增根确定后可按如下步骤进行:①化分式方程为整式方程;②把增根代入整式方程即可求得相关字母的值.
23、1
【解析】
直接根据内角和公式计算即可求解.
【详解】
(n﹣2)•110°=1010°,解得n=1.
故答案为1.
主要考查了多边形的内角和公式.多边形内角和公式:.
二、解答题(本大题共3个小题,共30分)
24、且.
【解析】
先根据分式方程的解法求解方程,再根据分式方程解的情况分类讨论求m的取值,
再解不等式组,根据不等式组的解集和分式方程解的关系即可求解.
【详解】
方程两边同乘,得,,解得,
当时,,,
当时,,,
故当或时有,
方程的解为,其中且,
解不等式组得解集,
由题意得且,解得且,
的取值范围是且.
本题主要考查解含参数的分式方程和解不等式组,解决本题的关键是要熟练掌握解含参数的分式方程.
25、(1)y1=4500x+1500;y2=4800x;(2)答案见解析;(3)从甲商场买4台,从乙商场买6台时,总运费最少,最少运费是560元
【解析】
(1)根据题意列出函数解析式即可;
(2)①若甲商场购买更优惠,可得不等式4500x+1500<4800x,解此不等式,即可求得答案;
②若乙商场购买更优惠,可得不等式4500x+1500>4800x,解此不等式,即可求得答案;
③若两家商场收费相同,可得方程4500x+1500=4800x,解此方程,即可求得答案;
(3)根据题意列出函数解析式,再根据增减性即可进行解答.
【详解】
解:(1)y1=6000+(1-25%)×6000(x-1)=4500x+1500;
y2=(1-20%)×6000x=4800x;
(2)设学校购买x台电脑,
若到甲商场购买更优惠,则:
4500x+1500<4800x,
解得:x>5,
即当购买电脑台数大于5时,甲商场购买更优惠;
若到乙商场购买更优惠,则:
4500x+1500>4800x,
解得:x<5,
即当购买电脑台数小于5时,乙商场购买更优惠;
若两家商场收费相同,则:
4500x+1500=4800x,
解得:x=5,
即当购买5台时,两家商场的收费相同;
(3)w=50a+(10-a)60=600-10a,
当a取最大时,费用最小,
∵甲商场只有4台,
∴a取4,W=600-40=560,
即从甲商场买4台,从乙商场买6台时,总运费最少,最少运费是560元.
本题考查了一元一次不等式实际应用问题,涉及了不等式与方程的解法,解题的关键是理解题意,根据题意求得函数解析式,然后利用函数的性质求解.
26、(1)25、当一次销售数量超过 25 个时,每个均按 30 元销售;(2)线段 AB 满足的 y 与 x 之间的函数解析式是 y=-x+55(5≤x≤25);(3)此时商店的利润为300元.
【解析】
(1)根据单价不得低于30元,即可求出m,所以BC表示当销量超过 25 个时,每个均按 30 元销售,
(2)待定系数法即可求解,
(3)将x=15代入解析式中即可求解.
【详解】
(1)m=5+(50-30)÷1=25 ,
射线BC 所表示的实际意义为当一次销售数量超过25 个时,每个均按 30 元销售,
故答案为:25、当一次销售数量超过 25 个时,每个均按 30 元销售;
(2)设线段 AB 满足的 y 与 x 之间的函数解析式为 y=kx+b, ,得 ,
即线段 AB 满足的 y 与 x 之间的函数解析式是 y=-x+55(5≤x≤25);
(3)当 y=15 时,15=-x+55,得 x=40,
∴此时商店的利润为:15×[40 -20]=300(元)
本题考查了一次函数实际应用问题,属于简单题,注意分段考虑函数关系是解题关键.
题号
一
二
三
四
五
总分
得分
商场
优惠条件
甲商场
第一台按原价收费,其余的每台优惠25%
乙商场
每台优惠20%
2024年福建省厦门外国语学校数学九上开学统考模拟试题【含答案】: 这是一份2024年福建省厦门外国语学校数学九上开学统考模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
福建省 厦门双十中学海沧附属学校2023-2024学年九年级下学期开学考试数学试题(): 这是一份福建省 厦门双十中学海沧附属学校2023-2024学年九年级下学期开学考试数学试题(),共5页。试卷主要包含了选择题,第四象限B.点在它的图象上,解答题等内容,欢迎下载使用。
福建省厦门外国语海沧附属学校2023-2024学年九年级数学第一学期期末质量检测模拟试题含答案: 这是一份福建省厦门外国语海沧附属学校2023-2024学年九年级数学第一学期期末质量检测模拟试题含答案,共9页。试卷主要包含了下列说法正确的是等内容,欢迎下载使用。