2024-2025学年天津市西青区名校九年级数学第一学期开学监测模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图,正比例函数y=x与反比例y=的图象相交于A、C两点,AB⊥x轴于B,CD⊥x轴于D,则四边形ABCD的面积为( )
A.1B.C.2D.
2、(4分)下列图象能表示一次函数的是( )
A.B.C.D.
3、(4分)如图,中,垂足为点,若,则的度数是( )
A.B.C.D.
4、(4分)下列运算中正确的是( )
A.B.C.D.
5、(4分)已知点,点都在直线上,则,的大小关系是( )
A.B.C.D.无法确定
6、(4分)如果把分式中的、都扩大到10倍,那么分式的值( )
A.扩大10倍B.不变C.扩大20倍D.是原来的
7、(4分)如图,有两颗树,一颗高10米,另一颗高4米,两树相距8米.一只鸟从一颗树的树梢飞到另一颗树的树梢,问小鸟至少飞行
A.8米B.10米C.12米D.14米
8、(4分)如图,直线y=x+b与直线y=kx+7交于点P(3,5),通过观察图象我们可以得到关于x的不等式x+b>kx+7的解集为x>3,这一求解过程主要体现的数学思想是( )
A.分类讨论B.类比C.数形结合D.公理化
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)若三角形三边分别为6,8,10,那么它最长边上的中线长是_____.
10、(4分)如图,在中,,,的垂直平分线交于点,交于点,则的度数是__________.
11、(4分)已知点 A(2,a),B(3,b)在函数 y=1﹣x 的图象上,则 a 与 b 的大小关系是_____.
12、(4分)若式子有意义,则实数的取值范围是________.
13、(4分)如图,四边形是正方形,延长到,使,则__________°.
三、解答题(本大题共5个小题,共48分)
14、(12分)已知y是x的一次函数,当x=3时,y=1;当x=−2时,y=−4,求这个一次函数的解析式.
15、(8分)(1)如图1,正方形ABCD中,点E,F分别在边BC,CD上,∠EAF=45°,延长CD到点G,使DG=BE,连结EF,AG.求证:①∠BEA =∠G,② EF=FG.
(2)如图2,等腰直角三角形ABC中,∠BAC=90°,AB=AC,点M,N在边BC上,且∠MAN=45°,若BM=1,CN=3,求MN的长.
16、(8分)计算:
(1);
(2)先化简,再求值,;其中,x2,y2.
17、(10分)已知关于x的一元二次方程总有两个不相等的实数根.
(1)求m的取值范围;
(2)若此方程的两根均为正整数,求正整数m的值.
18、(10分)近年来雾霾天气给人们的生活带来很大影响,空气质量问题倍受人们关注.某商场计划购进一批、两种空气净化装置,每台种设备价格比每台种设备价格多0.7万元,花3万元购买种设备和花7.2万元购买种设备的数量相同.
(1)求种、种设备每台各多少万元?
(2)根据销售情况,需购进、两种设备共20台,总费用不高于15万元,求种设备至少要购买多少台?
(3)若每台种设备售价0.6万元,每台种设备售价1.4万元,在(2)的情况下商场应如何进货才能使这批空气净化装置售完后获利最多?
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)若一组数据,,,,的众数是,则这组数据的方差是__________.
20、(4分)如图,平面直角坐标系中,经过点B(﹣4,0)的直线y=kx+b与直线y=mx+2相交于点A(,-1),则不等式mx+2<kx+b<0的解集为____.
21、(4分)已知菱形一内角为,且平分这个内角的一条对角线长为8,则该菱形的边长__________.
22、(4分)计算:(1)=______;(2)=______;(3) =______.
23、(4分)平行四边形ABCD的周长为20cm,对角线AC、BD相交于点O,若△BOC的周长比△AOB的周长大2cm,则CD=_____cm.
二、解答题(本大题共3个小题,共30分)
24、(8分)某校为了了解八年级学生的身体素质情况,该校体育老师从八年级学生中随机抽取了50名进行一分钟跳绳次数测试,以测试数据为样本,绘制了如下的统计图表:
请结合图表完成下列问题:
(1)表中的______ ;
(2)请把频数分布直方图补充完整;
(3)所抽取的50名学生跳绳成绩的中位数落在哪一组?
(4)该校八年级学生共有500人,若规定一分钟跳绳次数()在时为达标,请估计该校八年级学生一分钟跳绳有多少人达标?
25、(10分)在平面直角坐标系中,已知直线与轴交于点,与轴交于点,点为的中点,点是线段上的动点,四边形是平行四边形,连接.设点横坐标为.
(1)填空:①当________时,是矩形;②当________时,是菱形;
(2)当的面积为时,求点的坐标.
26、(12分)4月23日是世界读书日,总书记说:“读书可以让人保持思维活力,让人得到智慧的启发,让人漱养浩然正气.”倡导读书活动,鼓励师生利用课余时间广泛阅读.期末学校为了调查这学期学生课外阅读情况,随机抽样调查了一部分学生阅读课外书的本数,并将收集到的数据整理成如图的统计图.
(1)本次调查的学生人数为______人;
(2)求本次所调查学生读书本数的众数,中位数;
(3)若该校有800名学生,请你估计该校学生这学期读书总数是多少本?
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
首先根据反比例函数图像上的点与原点所连的线段、坐标轴、向坐标轴做垂线所围成的直角三角形面积S的关系即S= ,得出,再根据反比例函数的对称性可知:OB=OD,得出得出结果.
【详解】
解:根据反比例函数得对称性可知:
OB=OD,AB=CD,
∵ 四边形ABCD的面积等于,
又
∴S四边形ABCD=2.
故答案选:C.
本题考查的是一次函数与反比例函数的交点问题,解题关键是熟知反比例函数中的几何意义,即图像上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积的关系即.
2、D
【解析】
将y=k(x-1)化为y=kx-k后分k>0和k<0两种情况分类讨论即可.
【详解】
y=k(x-1)=kx-k,
当k>0时,-k<0,此时图象呈上升趋势,且交与y轴负半轴,无符合选项;
当k<0时,-k>0,此时图象呈下降趋势,且交与y轴正半轴,D选项符合;
故选:D.
考查了一次函数的性质,解题的关键是能够分类讨论.
3、A
【解析】
根据平行四边形性质得出∠B=∠D,根据三角形内角和定理求出∠B即可.
【详解】
解:∵四边形ABCD是平行四边形,
∴∠B=∠D.
∵AE⊥BC,
∴∠AEB=90°.
又∠BAE=23°,
∴∠B=90°-23°=67°.
即∠D=67°.
故选:A.
本题考查了平行四边形的性质,关键是求出∠B的度数.
4、B
【解析】
根据二次根式的加法法则对A进行判断;根据二次根式的乘法法则对B进行判断;根据二次根式的除法法则对C进行判断;根据乘方的意义对D进行判断.
【详解】
A. 不能合并,所以A选项错误;
B. 原式=,所以B选项正确;
C. 原式= ,所以C选项错误;
D. 原式=3,所以D选项错误。
故选B.
此题考查二次根式的混合运算,掌握运算法则是解题关键
5、A
【解析】
根据一次函数的性质,当k<0时,y随x的增大而减小,可以解答本题.
【详解】
解:∵y=-3x+2,k=-3<0,
∴y随x的增大而减小,
∵点A(-1,y1),B(2,y2)都在直线y=-3x+2上,
∴y1>y2,
故选:A.
本题考查一次函数y=kx+b(k≠0,且k,b为常数)的图象性质:当k>0时,y随x的增大而增大;当k<0时,y将随x的增大而减小.
6、A
【解析】
利用分式的基本性质即可求出答案.
【详解】
用10x和10y代替式子中的x和y得:
原式=
=
∴分式的值扩大为原来的10倍.
选A.
本题考查了分式的基本性质。
7、B
【解析】
试题分析:根据“两点之间线段最短”可知:小鸟沿着两棵树的树梢进行直线飞行,所行的路程最短,运用勾股定理可将两点之间的距离求出.
如图,设大树高为AB=10米,小树高为CD=4米,
过C点作CE⊥AB于E,则EBDC是矩形,连接AC,
∴EB=4米,EC=8米,AE=AB﹣EB=10﹣4=6米,
在Rt△AEC中,(米).故选B.
8、C
【解析】
通过观察图象得出结论,这一求解过程主要体现的数学思想是数形结合.
【详解】
∵不等式x+b>kx+7,就是确定直线y=kx+b在直线y=kx+7 上方部分所有的点的横坐标所构成的集合,
∴这一求解过程主要体现的数学思想是数形结合.
故选C.
本题考查了一次函数与一元一次不等式,解答此题时,采用了“数形结合”的数学思想,使问题变得形象、直观,降低了题的难度.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、1
【解析】
根据勾股定理的逆定理可得三角形是直角三角形,再根据直角三角形斜边上的中线等于斜边的一半即可求解.
【详解】
解:∵三角形三边分别为6,8,10,62+82=102,
∴该三角形为直角三角形,
∵最长边即斜边为10,
∴斜边上的中线长为:1,
故答案为1.
本题考查了勾股定理的逆定理、直角三角形斜边中线的性质,熟练掌握勾股定理的逆定理以及直角三角形斜边中线的性质是解题的关键.
10、
【解析】
根据等边对等角和三角形的内角和定即可求出∠ABC,然后根据垂直平分线的性质可得DA=DB,再根据等边对等角可得∠DBA=∠A,即可求出∠DBC.
【详解】
解:∵,,
∴∠ABC=∠ACB=(180°-∠A)=75°
∵的垂直平分线交于点,
∴DA=DB
∴∠DBA=∠A=30°
∴∠DBC=∠ABC-∠DBA=45°
故答案为:45°
此题考查的是等腰三角形的性质和垂直平分线的性质,掌握等边对等角和垂直平分线的性质是解决此题的关键.
11、a>b.
【解析】
分别把点A(2,a),B(3,b)代入函数y=1-x,求出a、b的值,并比较出其大小即可.
【详解】
∵点A(2,a),B(3,b)在函数y=1−x的图象上,
∴a=−1,b=−2,
∵−1>−2,
∴a>b.
故答案为:a>b.
此题考查一次函数图象上点的坐标特征,解题关键在于把A,B代入方程.
12、x⩾1
【解析】
根据二次根式有意义的条件可得:x-1≥0,即可解答
【详解】
由题意得:x−1⩾0,
解得:x⩾1,
故答案为:x⩾1
此题考查二次根式有意义的条件,难度不大
13、22.5
【解析】
根据正方形的性质求出∠CAB=∠ACB=45°,再根据AC=AE求出∠ACE=67.5°,由此即可求出答案.
【详解】
∵四边形ABCD是正方形,
∴∠DAB=∠DCB=90°,
∵AC是对角线,
∴∠CAB=∠ACB=45°,
∵AC=AE,
∴∠ACE=67.5°,
∴∠BCE=∠ACE-∠ACB=22.5°,
故答案为:22.5°.
此题考查正方形的性质,等腰三角形的性质,三角形的内角和性质,是一道较为基础的题型.
三、解答题(本大题共5个小题,共48分)
14、y=x-1.
【解析】
试题分析:设这个一次函数的解析式为y="kx+b," 分别将x=3,y=1和x=−1,y=−4分别代入y=kx+b得方程组,解这个方程组即可求得k、b的值,也就求得了函数的解析式.
试题解析:解:设这个一次函数的解析式为y="kx+b," 将x=3,y=1和x=−1,y=−4分别代入y=kx+b得,,
解这个方程组得,.
∴所求一次函数的解析式为y=x—1.
考点:用待定系数法求函数解析式.
15、(1)①见解析②见解析(1)
【解析】
(1)在△ABE和△ADG中,根据SAS得出△ABE≌△ADG则∠BEA=∠G.然后在△FAE和△GAF中通过SAS证明得出△FAE≌△GAF,则EF=FG.
(1)过点C作CE⊥BC,垂足为点C,截取CE,使CE=BM.连接AE、EN.在△ABM和△ACE中,通过SAS证明得出△ABM≌△ACE, AM=AE, ∠BAM+∠CAN=45°. 在△MAN和△EAN中,通过SAS证明得出△MAN≌△EAN, MN=EN. Rt△ENC中,由勾股定理,得EN1=EC1+NC1得出最终结果.
【详解】
(1)证明:在正方形ABCD中,∠ABE=∠ADG,AD=AB,
在△ABE和△ADG中,,
∴△ABE≌△ADG(SAS),∠BEA=∠G
∴∠BAE=∠DAG,AE=AG,
又∠BAD=90°,
∴∠EAG=90°,∠FAG=45°
在△FAE和△GAF中,,
∴△FAE≌△GAF(SAS),
∴EF=FG
(1)
解:如图,过点C作CE⊥BC,垂足为点C,截取CE,使CE=BM.连接AE、EN.
∵AB=AC,∠BAC=90°,
∴∠B=∠ACB=45°.
∵CE⊥BC,
∴∠ACE=∠B=45°.
在△ABM和△ACE中,,
∴△ABM≌△ACE(SAS).
∴AM=AE,∠BAM=∠CAE.
∵∠BAC=90°,∠MAN=45°,
∴∠BAM+∠CAN=45°.
于是,由∠BAM=∠CAE,得∠MAN=∠EAN=45°.
在△MAN和△EAN中,,
∴△MAN≌△EAN(SAS).
∴MN=EN.
在Rt△ENC中,由勾股定理,得EN1=EC1+NC1.
∴MN1=BM1+NC1.
∵BM=1,CN=3,
∴MN1=11+31,
∴MN=.
本题主要考查全等三角形的判定定理、勾股定理,做辅助线是本题的难点.
16、(1);(2)2.
【解析】
(1)根据二次根式和零指数幂进行化简,再进行加减运算即可得到答案;
(2)先根据平方差公式对进行化简,再代入x2,y2,计算即可得到答案.
【详解】
(1)
=
=
=
(2)
=
=
=
将x2,y2代入得到=2.
本题考查平方差公式、二次根式和零指数幂,解题的关键是掌握平方差公式、二次根式和零指数幂.
17、(1)当m≠0和3时,原方程有两个不相等的实数根;(2)可取的正整数m的值分别为1.
【解析】
(1)利用一元二次方程的定义和判别式的意义得到m≠0且△=[-(m+3)]2-4×m×3=(m-3)2>0,从而可得到m的范围;
(2)利用求根公式解方程得到x1=1,x2=,利用此方程的两根均为正整数得到m=1或m=3,然后利用(1)的范围可确定m的值.
【详解】
解:(1)由题意得:m≠0且>0,
∴当m≠0和3时,原方程有两个不相等的实数根.
(2)∵此方程的两根均为正整数,即,
解方程得,.
∴可取的正整数m的值分别为1.
本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.
18、(1)种设备每台0.5万元,种设备每台l.2万元;(2)种设备至少购买13台;(3)当购买种设备13台,种设备7台时,获利最多.
【解析】
(1)设种设备每台万元,则种设备每台万元,根据“3万元购买种设备和花7.2万元购买种设备的数量相同”列分式方程即可求解;
(2)设购买种设备台,则购买种设备台,根据总费用不高于15万元,列不等式求解即可;
【详解】
(1)设种设备每台万元,则种设备每台万元,
根据题意得:,
解得,
经检验,是原方程的解,
∴.
则种设备每台0.5万元,种设备每台l.2万元;
(2)设购买种设备台,则购买种设备台,
根据题意得:,
解得:,
∵为整数,
∴种设备至少购买13台;
(3)每台种设备获利(万元),
每台种设备获利(万元),
∵,
∴购进种设备越多,获利越多,
∴当购买种设备13台,种设备(台)时,获利最多.
本题主要考查了二元一次方程组和一元一次不等式组的应用,关键是弄懂题意,找出题目中的关键语句,列出方程和不等式.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、13.1
【解析】
首先根据众数的定义求出的值,进而利用方差公式得出答案.
【详解】
解:数据0,,8,1,的众数是,
,
,
,
故答案为:13.1.
此题主要考查了方差以及众数的定义,正确记忆方差的定义是解题关键.
20、﹣4<x<﹣
【解析】
根据函数的图像,可知不等式mx+2<kx+b<0的解集就是y=mx+2在函数y=kx+b的下面,且它们的值小于0的解集是﹣4<x<﹣.
故答案为﹣4<x<﹣.
21、8
【解析】
根据已知可得该对角线与菱形的一组邻边构成一个等边三角形,从而可求得菱形的边长.
【详解】
菱形的一个内角为120°,则邻角为60°
则这条对角线和一组邻边组成等边三角形,
可得边长为8cm.
故答案为8.
此题考查菱形的性质,对角线与菱形的一组邻边构成一个等边三角形是解题关键
22、
【解析】
根据二次根式的乘法公式:和除法公式计算即可.
【详解】
解:(1);
(2);
(3).
故答案为:;;.
此题考查的是二次根式的化简,掌握二次根式的乘法公式:和除法公式是解决此题的关键.
23、1.
【解析】
根据平行四边形的性质可知,平行四边形的对角线互相平分,由于△BOC的周长比△AOB的周长大2cm,则BC比AB长7cm,所以根据周长的值可以求出AB,进而求出CD的长.
【详解】
解:∵平行四边形的周长为20cm,
∴AB+BC=10cm;
又△BOC的周长比△AOB的周长大2cm,
∴BC﹣AB=2cm,
解得:AB=1cm,BC=6cm.
∵AB=CD,
∴CD=1cm
故答案为1.
二、解答题(本大题共3个小题,共30分)
24、(1)12;(2)见解析;(3)第3组;(4)360人;
【解析】
(1)用调查总人数减去其他小组的频数即可求得a值;
(2)根据调查的总人数和每一小组的频数即可确定中位数落在那个范围内;
(3)用总人数乘以达标率即可.
【详解】
(1)a=50-6-8-18-6=12;
统计图为:
(2)∵共50人,
∴中位数为第25人和第26人的平均数,
∵第25人和第26人均落在第3小组内,
∴中位数落在第3小组内;
(3)达优人数为:500×=360人;
估计该校八年级学生一分钟跳绳有360人达标?
此题主要考查读频数分布直方图的能力和利用统计图获取信息的能力.解题的关键是根据直方图得到进一步解题的有关信息.
25、(1)4,;(2)(1,)
【解析】
(1)根据题意可得OB=6,OA=8,假设是矩形,那么CD⊥BO,结合三角形中位线性质可得CD=,从而即可得出m的值;同样假设是菱形,利用勾股定理求出m即可;
(2)利用△EOA面积为9求出点E到OA的距离,从而进一步得出D的纵坐标,最后代入解析式求出横坐标即可.
【详解】
(1)∵直线与轴交于点,与轴交于点,点为的中点
∴OB=6,OA=8,
当是矩形时,CD⊥OB,
∵C是BO中点,
∴此时CD=,
∴此时m的值为4;
当是菱形时,CD=CO=3,
如图,过D作OB垂线,交OB于F,则 DF=m,CF=,
在Rt△DFC中,,
即:,
解得:(舍去)或;
∴此时m的值为;
(2)如图,过E作OA垂线,交OA于N,
∵△EOA面积为9,
∴,
∴,
∴DN==,
∵D在直线上,
∴,
解得,
∴D点坐标为(1,)
本题主要考查了一次函数与几何的综合运用,熟练掌握相关概念是解题关键.
26、(1)20;(2)4,4;(3)估计该校学生这学期读书总数约3600本
【解析】
将条形图中的数据相加即可;
根据众数和中位数的概念解答即可;
先求出平均数,再解答即可.
【详解】
,
故答案为20;
由条形统计图知,调查学生读书本数最多的是4本,
故众数是4本
在调查的20人读书本数中,从小到大排列中第9个和第10个学生读的本数都是4本,
故中位数是4本;
故答案为4;4;
每个人读书本数的平均数是:
(本),
总数是:(本)
答:估计该校学生这学期读书总数约3600本.
本题考查条形统计图、用样本估计总体、中位数、众数、加权平均数,解题的关键是明确题意,找出所求问题需要的条件.
题号
一
二
三
四
五
总分
得分
组别
次数
频数(人数)
第1组
6
第2组
8
第3组
第4组
18
第5组
6
2024-2025学年天津市宁河县名校九年级数学第一学期开学质量跟踪监视模拟试题【含答案】: 这是一份2024-2025学年天津市宁河县名校九年级数学第一学期开学质量跟踪监视模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年天津市蓟县名校数学九上开学统考模拟试题【含答案】: 这是一份2024-2025学年天津市蓟县名校数学九上开学统考模拟试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年天津市东丽区名校九上数学开学达标检测模拟试题【含答案】: 这是一份2024-2025学年天津市东丽区名校九上数学开学达标检测模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。