2024-2025学年天津市北辰区数学九上开学学业质量监测模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图,在梯形ABCD中,AD//BC,E为BC上一点,DE//AB,AD的长为2,BC的长为4,则CE的长为( ).
A.1B.2C.3D.4
2、(4分)式子有意义,则a的取值范围是( )
A.且B.或
C.或D.且
3、(4分)下列判断正确的是( )
A.四条边相等的四边形是正方形B.四个角相等的四边形是矩形
C.对角线垂直的四边形是菱形D.对角线相等的四边形是平行四边形
4、(4分)某运动员进行赛前训练,如果对他30次训练成绩进行统计分析,判断他的成绩是否稳定,则需要知道这10次成绩的( ).
A.众数B.方差C.平均数D.中位数
5、(4分)下列方程是一元二次方程的是( )
A.B.C.D.
6、(4分)下列调查中,适合普查的事件是( )
A.调查华为手机的使用寿命v
B.调查市九年级学生的心理健康情况
C.调查你班学生打网络游戏的情况
D.调查中央电视台《中国舆论场》的节目收视率
7、(4分)下列命题中,真命题是( )
A.对角线相等的四边形是矩形
B.对角线互相垂直的四边形是菱形
C.对角线互相平分的四边形是平行四边形
D.对角线互相垂直平分的四边形是正方形
8、(4分)下列说法是8的立方根;是64的立方根;是的立方根;的立方根是,其中正确的说法有个.
A.1B.2C.3D.4
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)若是二次函数,则m=________ .
10、(4分)已知方程组的解为,则一次函数y=﹣x+1和y=2x﹣2的图象的交点坐标为_____.
11、(4分)如图,直线经过点,则关于的不等式的解集是______.
12、(4分)如图,在▱ABCD中,AE⊥BC于点E,F为DE的中点,∠B=66°,∠EDC=44°,则∠EAF的度数为_____.
13、(4分)某中学规定学生的学期体育成绩满分为100分,其中早锻炼及体育课外活动占20%,期中考试成绩占30%,期末考试成绩占50%,小桐的三项成绩(百分制)依次为95,90,1.则小桐这学期的体育成绩是__________.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,一次函数y1=2x+2的图象与反比例函数y2= (k为常数,且k≠0)的图象都经过点A(m,4),求点A的坐标及反比例函数的表达式.
15、(8分)端午节放假期间,某学校计划租用辆客车送名师生参加研学活动,现有甲、乙两种客车,它们的载客量和租金如下表,设租用甲种客车辆,租车总费用为元.
(1)求出(元)与(辆)之间函数关系式;
(2)求出自变量的取值范围;
(3)选择怎样的租车方案所需的费用最低?最低费用多少元?
16、(8分)A、B两地的距离是80千米,一辆巴士从A地驶出3小时后,一辆轿车也从A地出发,它的速度是巴士的3倍,已知轿车比巴士早20分钟到达B地,试求两车的速度。
17、(10分)在平行四边形中,于E,于F.若,平行四边形周长为40,求平行四边形的面积.
18、(10分)先化简,再求值:(a+)÷,其中a=1.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,直线y=kx+b(k≠0)经过点A(﹣2,4),则不等式kx+b>4的解集为______.
20、(4分)如图,在四边形ABCD中,AD∥BC,且AD>BC,BC=6 cm,动点P,Q分别从A,C同时出发,P以1 cm/s的速度由A向D运动,Q以2cm/s的速度由C向B运动(Q运动到B时两点同时停止运动),则________后四边形ABQP为平行四边形.
21、(4分)如图,延长矩形ABCD的边BC至点E,使CE=BD,连结AE,如果∠ADB=30°,则∠E=_____度.
22、(4分)如图,四边形ABCD是矩形,对角线AC、BD相交于点O,如果再添加一个条件,即可推出该四边形是正方形,这个条件可以是_________.
23、(4分)如图,△ABC中,∠B=90°,AB=6,BC=8,将△ABC沿DE折叠,使点C落在AB边的C′处,并且C′D∥BC,则CD的长是________.
二、解答题(本大题共3个小题,共30分)
24、(8分)为深入践行总书记提出的“绿水青山就是金山银山”的重要理念,某学校积极响应号召,进行校园绿化,计划购进、两种树苗共30棵,已知种树苗每棵80元,种树苗每棵50元.设购买种树苗棵,购买两种树苗所需费用为元
(1)求与的函数关系式.
(2)若购买种树苗的数量不少于种树苗数量的2倍,请给出一种费用最少的购买方案,并求出该方案所需的费用.
25、(10分)是否存在整数k,使方程组的解中,x大于1,y不大于1,若存在,求出k的值,若不存在,说明理由.
26、(12分)已知四边形ABCD是菱形,AB=4,∠ABC=60°,∠EAF的两边分别与射线CB,DC相交于点E,F,且∠EAF=60°.
(1)如图1,当点E是线段CB的中点时,直接写出线段AE,EF,AF之间的数量关系;
(2)如图2,当点E是线段CB上任意一点时(点E不与B、C重合),求证:BE=CF;
(3)如图3,当点E在线段CB的延长线上,且∠EAB=15°时,求点F到BC的距离.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、B
【解析】
先证明四边形ABED为平行四边形,再利用平行四边形的性质进行计算即可.
【详解】
∵,,
∴四边形ABED为平行四边形,
∴AD=BE=1,
又∵BC=4,
∴CE=BC-BE=4-1=1.
故选:B.
本题考查平行四边形的判定与性质,需熟记判定定理及性质.
2、A
【解析】
根据零指数幂的意义、分式有意义的条件列出不等式,解不等式即可.
【详解】
解:由题意得,a-1≠0,a+1≠0,
解得,a≠1且a≠-1,
故选:A.
本题考查的是分式有意义的条件、零指数幂,掌握分式有意义的条件是分母不等于零是解题的关键.
3、B
【解析】
由题意根据正方形、矩形、菱形、平行四边形的判定分别对每一项进行分析判断即可.
【详解】
解:A. 四条边相等的四边形是菱形,故本选项错误;
B. 四个角相等的四边形是矩形,故本选项正确;
C. 对角线垂直的平行四边形是菱形,故本选项错误;
D. 对角线互相平分的四边形是平行四边形,故本选项错误.
故选:B.
本题考查正方形、平行四边形、矩形以及菱形的判定.注意掌握正方形是菱形的一种特殊情况,且正方形还是一种特殊的矩形.
4、B
【解析】
根据众数、平均数、中位数、方差的概念分析.
【详解】
众数、平均数、中位数是反映一组数据的集中趋势,只有方差是反映数据的波动大小的,故为了判断成绩是否稳定,需要知道的是方差.
故选:B.
本题考查统计量的选择,明确各统计量的概念及意义是解题关键.
5、B
【解析】
本题根据一元二次方程必须满足两个条件:(1)未知数的最高次数是2;(2)二次项系数不为1.据此即可判断.
【详解】
解:A、含有2个未知数,不是一元二次方程,故选项不符合题意;
B、只有一个未知数且最高次数为2,是一元二次方程,选项符合题意;
C、不是整式方程,则不是一元二次方程,选项不符合题意;
D、整理后得,最高次数为1,不是二次方程,选项不符合题意;
故选:B.
本题利用了一元二次方程的概念.只有一个未知数且未知数最高次数为2的整式方程叫做一元二次方程,一般形式是ax2+bx+c=1(且a≠1).特别要注意a≠1的条件.这是在做题过程中容易忽视的知识点.
6、C
【解析】试题解析:A、调查华为手机的使用寿命适合抽样调查;
B、调查市九年级学生的心理健康情况适合抽样调查;
C、调查你班学生打网络游戏的情况适合普查;
D、调查中央电视台《中国舆论场》的节目收视率适合抽样调查,
故选C.
7、C
【解析】
试题分析:A、两条对角线相等且相互平分的四边形为矩形;故本选项错误;
B、对角线互相垂直的平行四边形是菱形;故本选项错误;
C、对角线互相平分的四边形是平行四边形;故本选项正确;
D、对角线互相垂直平分且相等的四边形是正方形;故本选项错误.
故选C.
8、C
【解析】
根据立方根的概念即可求出答案.
【详解】
①2是8的立方根,故①正确;
②4是64的立方根,故②错误;
③是的立方根,故③正确;
④由于(﹣4)3=﹣64,所以﹣64的立方根是﹣4,故④正确.
故选C.
本题考查了立方根的概念,解题的关键是正确理解立方根的概念,本题属于基础题型.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、-1.
【解析】
试题分析:根据二次函数的定义可知:,解得:,则m=-1.
10、(1,0)
【解析】
试题分析:二元一次方程组是两个一次函数变形得到的,所以二元一次方程组的解,就是函数图象的交点坐标
试题解析:∵方程组的解为,
∴一次函数y=-x+1和y=2x-2的图象的交点坐标为(1,0).
考点:一次函数与二元一次方程(组).
11、
【解析】
写出函数图象在x轴下方所对应的自变量的范围即可.
【详解】
解:观察图像可知:当x>2时,y<1.
所以关于x的不等式kx+3<1的解集是x>2.
故答案为:x>2.
本题考查了一次函数与一元一次不等式的关系.y=kx+b与kx+b>1、kx+b<1的关系是:从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)1的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.整体是就是体现数形结合的思想.
12、68°
【解析】
只要证明∠EAD=90°,想办法求出∠FAD即可解决问题.
【详解】
解:∵四边形ABCD是平行四边形,
∴∠B=∠ADC=66°,AD∥BC,
∵AE⊥BC,
∴AE⊥AD,
∴∠EAD=90°,
∵F为DE的中点,
∴FA=FD=EF,
∵∠EDC=44°,
∴∠ADF=∠FAD=22°,
∴∠EAF=90°﹣22°=68°,
故答案为:68°.
本题考查平行四边形的性质、直角三角形斜边中线定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.
13、2.5
【解析】
根据题意,求小桐的三项成绩的加权平均数即可.
【详解】
95×20%+90×30%+1×50%=2.5(分),
答:小桐这学期的体育成绩是2.5分.
故答案是:2.5
本题主要考查加权平均数,掌握加权平均数的意义,是解题的关键.
三、解答题(本大题共5个小题,共48分)
14、A的坐标是(1,4),y2=.
【解析】
把y=4代入y1=2x+2可求得A的横坐标,则A的坐标即可确定,再利用待定系数法求得反比例函数的解析式.
【详解】
把y=4代入y=2x+2,得2x+2=4,
解得:x=1,
则A的坐标是(1,4).
把(1,4)代入y2=得:k=1×4=4,
则反比例函数的解析式是:y2=.
本题考查了反比例函数与一次函数的交点问题,解题的关键是熟知待定系数法的运用.
15、(1);(2),且为整数;(3)租用甲种客车辆,租用乙种客车辆,所需的费用最低,最低费用元.
【解析】
(1)根据租用甲种客车x辆,则租用乙种客车(6-x)辆,进而表示出总租金即可.
(2)由实际生活意义确定自变量的取值范围.
(3)由题意可列出一元一次不等式方程组.由此推出y随x的增大而增大.
【详解】
解:(1)设租用甲种客车辆,则租用乙种客车辆,
由题意可得出:;
(2)由得:.
又,
的取值范围是:,且为整数;
(3),且为整数,
取或或
中
随的增大而增大
当时,的值最小.
其最小值元.
则租用甲种客车辆,租用乙种客车辆,所需的费用最低,最低费用元.
故答案为(1);(2),且为整数;(3)租用甲种客车辆,租用乙种客车辆,所需的费用最低,最低费用元.
本题考查一次函数的应用.解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的等量关系.要会利用题中的不等关系找到x的取值范围,并根据函数的增减性求得y的最小值是解题的关键.
16、解:设巴士的速度是x千米/小时,轿车的速度是3x千米/小时,
x=16
经检验x=16是方程的解.
16×3=48
巴士的速度是16千米/小时,轿车的速度是48千米/小时.
【解析】设巴士的速度是x千米/小时,轿车的速度是3x千米/小时,根据A、B两地的距离是80千米,一辆巴士从A地驶出3小时后,一辆轿车也从A地出发,它的速度是巴士的3倍,已知轿车比巴士早20分钟到达B地,可列方程求解.
17、1
【解析】
根据平行四边形的周长求出BC+CD=20,再根据平行四边形的面积求出BC=CD,然后求出CD的值,再根据平行四边形的面积公式计算即可得解.
【详解】
∵▱ABCD的周长=2(BC+CD)=40,
∴BC+CD=20①,
∵AE⊥BC于E,AF⊥CD于F,AE=4,AF=6,
∴S▱ABCD=4BC=6CD,
整理得,BC=CD②,
联立①②解得,CD=8,
∴▱ABCD的面积=AF•CD=6CD=6×8=1.
本题考查了平行四边形的性质,根据平行四边形的周长与面积得到关于BC、CD的两个方程并求出CD的值是解题的关键.
18、2.
【解析】
分析:把a+通分化简,再把除法转化为乘法,并把分子、分母分解因式约分,化成最简分式(或整式)后把a=1代入计算.
详解:(a+)÷
=[+]•
=•
=•
=,
当a=1时,原式==2.
点睛:本题考查了分式的化简求值,熟练掌握分式混合运算的运算法则是解答本题的关键,本题也考查了运用平方差公式和完全平方公式分解因式.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、x>-1.
【解析】
结合函数的图象利用数形结合的方法确定不等式的解集即可.
【详解】
观察图象知:当x>-1时,kx+b>4,
故答案为x>-1.
考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=ax+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.
20、2s
【解析】
设运动时间为t秒,则AP=t,QC=2t,根据四边形ABQP是平行四边形,得AP=BQ,则得方程t=6-2t即可求解.
【详解】
如图,设t秒后,四边形APQB为平行四边形,
则AP=t,QC=2t,BQ=6-2t,
∵AD∥BC,
∴AP∥BQ,
当AP=BQ时,四边形ABQP是平行四边形,
∴t=6-2t,
∴t=2,
当t=2时,AP=BQ=2<BC<AD,符合.
综上所述,2秒后四边形ABQP是平行四边形.
故答案为2s.
此题主要考查的是平行四边形的判定,熟练掌握平行四边形的判定方法是关键.
21、1
【解析】
分析:连接AC,由矩形性质可得∠E=∠DAE、BD=AC=CE,知∠E=∠CAE,而∠ADB=∠CAD=30°,可得∠E度数.
详解:连接AC,
∵四边形ABCD是矩形,
∴AD∥BE,AC=BD,且∠ADB=∠CAD=30°,
∴∠E=∠DAE,
又∵BD=CE,
∴CE=CA,
∴∠E=∠CAE,
∵∠CAD=∠CAE+∠DAE,
∴∠E+∠E=30°,即∠E=1°,
故答案为1.
点睛:本题主要考查矩形性质,熟练掌握矩形对角线相等且互相平分、对边平行是解题关键.
22、AC⊥BD
【解析】
对角线互相垂直的矩形是正方形,根据正方形的判定定理添加即可.
【详解】
∵四边形ABCD是矩形,对角线AC、BD相交于点O,
∴当AC⊥BD时,四边形ABCD是正方形,
故答案为:AC⊥BD.
此题考查正方形的判定定理,熟记定理并运用解题是关键.
23、
【解析】
解:设CD=x,
根据C′D∥BC,且有C′D=EC,
可得四边形C′DCE是菱形;
即Rt△BC′E中,
AC==10,
EB=x;
故可得BC=x+x =8;
解得x=.
二、解答题(本大题共3个小题,共30分)
24、(1);(2)购买种树苗20棵,种树苗10棵费用最少,所需费用为2100元
【解析】
(1)根据总费用=购买A种树苗的费用+购买B种树苗的费用列出关系式即可;
(2)根据一次函数的增减性结合x的取值范围即可解答.
【详解】
解:(1);
(2)由题意得:,
解得:,
中,
随的增大而增大
时,有最小值,
最小.
此时,.
答:购买种树苗20棵,种树苗10棵费用最少,所需费用为2100元.
本题考查了一次函数的实际应用,根据实际问题列出关系式并运用函数性质求解是解题关键.
25、存在;k只能取3,4,5
【解析】
解此题时可以解出二元一次方程组中x,y关于k的式子,然后解出k的范围,即可知道k的取值.
【详解】
解:解方程组得
∵x大于1,y不大于1从而得不等式组
解之得2<k≤5
又∵k为整数
∴k只能取3,4,5
答:当k为3,4,5时,方程组的解中,x大于1,y不大于1.
此题考查的是二元一次方程组和不等式的性质,要注意的是x>1,y≤1,则解出x,y关于k的式子,最终求出k的范围,即可知道整数k的值.
26、(1)AE=EF=AF;(2)证明过程见解析;(3)3-
【解析】
试题分析:(1)结论AE=EF=AF.只要证明AE=AF即可证明△AEF是等边三角形.
(2)欲证明BE=CF,只要证明△BAE≌△CAF即可.
(3)过点A作AG⊥BC于点G,过点F作FH⊥EC于点H,根据FH=CF• sin60°,因为CF=BE,只要求出BE即可解决问题.
试题解析:解:(1)结论AE=EF=AF.
理由:如图1中,连接AC,∵四边形ABCD是菱形,∠B=60°,∴AB=BC=CD=AD,∠B=∠D=60°,∴△ABC,△ADC是等边三角形,∴∠BAC=∠DAC=60°.∵BE=EC,∴∠BAE=∠CAE=30°,AE⊥BC.∵∠EAF=60°,∴∠CAF=∠DAF=30°,∴AF⊥CD,∴AE=AF(菱形的高相等),∴△AEF是等边三角形,∴AE=EF=AF.
(2)连接AC.如图2中,∵∠BAC=∠EAF=60°,∴∠BAE=∠CAE,在△BAE和△CAF中,∵∠BAE=∠CAF,BA=AC,∠B=∠ACF,∴△BAE≌△CAF,∴BE=CF.
(3)过点A作AG⊥BC于点G,过点F作FH⊥EC于点H.∵∠EAB=15°,∠ABC=60°,∴∠AEB=45°.在Rt△AGB中,∵∠ABC=60°AB=4,∴BG=2,AG=.在Rt△AEG中,∵∠AEG=∠EAG=45°,∴AG=GE=,∴EB=EG﹣BG=.∵△AEB≌△AFC,∴AE=AF,EB=CF=,∠AEB=∠AFC=45°.∵∠EAF=60°,AE=AF,∴△AEF是等边三角形,∴∠AEF=∠AFE=60°.
∵∠AEB=45°,∠AEF=60°,∴∠CEF=∠AEF﹣∠AEB=15°.在Rt△EFH中,∠CEF=15°,∴∠EFH=75°.∵∠AFE=60°,∴∠AFH=∠EFH﹣∠AFE=15°.∵∠AFC=45°,∴∠CFH=∠AFC﹣∠AFH=30°.在Rt△CHF中,∵∠CFH=30°,CF=,∴FH=CF•sin60°==,∴点F到BC的距离为.
题号
一
二
三
四
五
总分
得分
批阅人
甲种客车
乙种客车
载客量(人/辆)
租金(元/辆)
2024-2025学年上海华亭学校九上数学开学学业质量监测模拟试题【含答案】: 这是一份2024-2025学年上海华亭学校九上数学开学学业质量监测模拟试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年陕西省扶风县数学九上开学学业质量监测模拟试题【含答案】: 这是一份2024-2025学年陕西省扶风县数学九上开学学业质量监测模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年山东省东明县数学九上开学学业质量监测模拟试题【含答案】: 这是一份2024-2025学年山东省东明县数学九上开学学业质量监测模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。