2024-2025学年天津市宁河县名校九年级数学第一学期开学质量跟踪监视模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)用配方法解一元二次方程x2﹣6x﹣10=0时,下列变形正确的为( )
A.(x+3)2=1B.(x﹣3)2=1
C.(x+3)2=19D.(x﹣3)2=19
2、(4分)以下列各组数为边长,能组成直角三角形的是( )
A.1,2,3B.2,3,4C.3,4,6D.1,,2
3、(4分)为考察甲、乙、丙、丁四种小麦的长势,在同一时期分别从中随机抽取部分麦苗,获得苗高(单位:cm)的平均数与方差为:==11,==15:s甲2=s丁2=1.6,s乙2=s丙2=6.1.则麦苗又高又整齐的是( )
A.甲B.乙C.丙D.丁
4、(4分)正方形、、…按如图所示的方式放置.点、、…和点、、…别在直线和轴上,则点的坐标是( )
A.B.C.D.
5、(4分)在函数中,自变量必须满足的条件是( )
A.B.C.D.
6、(4分)下列几红数中,是勾股数的有( ).
①5、12、13;②13、14、15;③3k、4k、5k(k为正整数);④、2、.
A.1组B.2组C.3组D.4组
7、(4分)如图,在六边形中,,分别平分,则的度数为( )
A.B.C.D.
8、(4分)下列各选项中因式分解正确的是( )
A.B.
C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,在中,,,是角平分线,是中线,过点作于点,交于点,连接,则线段的长为_____.
10、(4分)菱形的两条对角线的长分别为6和8,则这个菱形的周长为_____.
11、(4分)我们规定:等腰三角形的顶角与一个底角度数的比值叫做等腰三角形的“特征值”,记作k,若k=,则该等腰三角形的顶角为______度.
12、(4分)如图,AO=OC,BD=16cm,则当OB=___cm时,四边形ABCD是平行四边形.
13、(4分)某市出租车的收费标准如下:起步价5元,即千米以内(含千米)收费元,超过千米的部分,每千米收费元.(不足千米按千米计算)求车费(元)与行程(千米)的关系式________.
三、解答题(本大题共5个小题,共48分)
14、(12分)北京到济南的距离约为500km,一辆高铁和一辆特快列车都从北京去济南,高铁比特快列车晚出发3小时,最后两车同时到达济南,已知高铁的速度是特快列车速度的倍求高铁和特快列车的速度各是多少?列方程解答
15、(8分)如图,在中,,点为边上的动点,点从点出发,沿边向点运动,当运动到点时停止,若设点运动的时间为秒,点运动的速度为每秒2个单位长度.
(1)当时,= ,= ;
(2)求当为何值时,是直角三角形,说明理由;
(3)求当为何值时,,并说明理由.
16、(8分)如图,在平行四边形中,过点作于点,点在边上,,连接,.
(1)求证:四边形BFDE是矩形;
(2)若CF=3,BE=5,AF平分∠DAB,求平行四边形的面积.
17、(10分)解不等式组,并将它的解集在数轴上表示出来.
18、(10分)某校八年级两个班各选派10名学生参加“垃圾分类知识竞赛,各参赛选手的成绩如下:
八(1)班:88,91,92,93,93,93,94,98,98,100;
八(2)班:89,93,93,93,95,96,96,98,98,99
通过整理,得到数据分析表如下
(1)求表中,,的值;
(2)依据数据分析表,有同学认为最高分在(1)班,(1)班的成绩比(2)班好.但也有同学认为(2)班的成绩更好.请你写出两条支持八(2)班成绩更好的理由.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)已知直线y=x﹣3与y=2x+2的交点为(﹣5,﹣8),则方程组的解是_____.
20、(4分)几个同学包租一辆面包车去旅游,面包车的租价为180元,后来又增加了两名同学,租车价不变,结果每个同学比原来少分摊了3元车费.若设原参加旅游的同学有x人,则根据题意可列方程___________________________ .
21、(4分)用换元法解方程时,如果设,那么所得到的关于的整式方程为_____________
22、(4分)在▱ABCD中,AD=BD,BE是AD边上的高,∠EBD=20°,则∠A的度数为 .
23、(4分)如图,小靓用七巧板拼成一幅装饰图,放入长方形ABCD内,装饰图中的三角形顶点E,F分别在边AB,BC上,三角形①的边GD在边AD上,若图1正方形中MN=1,则CD=____.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,AC为矩形ABCD的对角线,DE⊥AC于E,BF⊥AC于F。
求证:DE=BF
25、(10分)随着改革开放进程的推进,改变的不仅仅是人们的购物模式,就连支付方式也在时代的浪潮中发生着天翻地覆的改变,除了现金、银行卡支付以外,还有微信、支付宝以及其他支付方式.在一次购物中,小明和小亮都想从微信、支付宝、银行卡三种支付方式中选一种方式进行支付,请用画树状图或列表格的方法,求出两人恰好选择同一种支付方式的概率.
26、(12分)在正方形ABCD中,过点A引射线AH,交边CD于点H(点H与点D不重合),通过翻折,使点B落在射线AH上的点G处,折痕AE交BC于点E,延长EG 交CD于点F.如图①,当点H与点C重合时,易证得FG=FD(不要求证明);如图②,当点H为边CD上任意一点时,求证:FG=FD.
(应用)在图②中,已知AB=5,BE=3,则FD= ,△EFC的面积为 .(直接写结果)
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、D
【解析】
方程移项变形后,利用完全平方公式化简得到结果,即可做出判断.
【详解】
方程移项得:,
配方得:,
即,
故选D.
2、D
【解析】
根据勾股定理的逆定理,只要两边的平方和等于第三边的平方即可构成直角三角形.
【详解】
解:A、12+22=5≠32,故不符合题意;
B、22+32=13≠42,故不符合题意;
C、32+42=25≠62,故不符合题意;
D、12+=4=22,符合题意.
故选D.
本题主要考查了勾股定理的逆定理,已知三条线段的长,判断是否能构成直角三角形的三边,简便的方法是:判断两个较小的数的平方和是否等于最大数的平方即可.
3、D
【解析】
方差越大,表明这组数据偏离平均数越大,数据越不稳定;方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,数据越稳定,据此判断出小麦长势比较整齐的是哪种小麦即可.
【详解】
∵=>=,
∴乙、丁的麦苗比甲、丙要高,
∵s甲2=s丁2<s乙2=s丙2,
∴甲、丁麦苗的长势比乙、丙的长势整齐,
综上,麦苗又高又整齐的是丁,
故选D.
本题主要考查了方差的意义和应用,要熟练掌握,解答此题的关键是要明确:方差越大,表明这组数据偏离平均数越大,数据越不稳定;方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,数据越稳定.
4、B
【解析】
利用一次函数图象上点的坐标特征及正方形的性质可得出点的坐标,根据点的坐标的变化可找出变化规律“点的坐标为(n为正整数)”,再代入n=2019即可得出的坐标,然后再将其横坐标减去纵坐标得到的横坐标,和的纵坐标相同.
【详解】
解:当时,,
∴点A1的坐标为(0,1).
∵四边形A1B1C1O为正方形,
∴点B1的坐标为(1,1),点C1的坐标为(1,0).
当时,,
∴点A2的坐标为(1,2).
∵A2B2C2C1为正方形,
∴点B2的坐标为(3,2),点C2的坐标为(3,0).
同理,可知:点B3的坐标为(7,4),点B4的坐标为(15,8),点B5的坐标为(31,16),…,
∴点的坐标为(n为正整数),
∴点的坐标为 ,
∴点的坐标为,即为 .
故选:B.
本题考查了一次函数图象上点的坐标特征、正方形的性质以及规律型:点的坐标,根据点的坐标的变化找出变化规律是解题的关键.
5、B
【解析】
由函数表达式是分式,考虑分式的分母不能为0,即可得到答案.
【详解】
解:∵函数,
∴,
∴;
故选:B.
本题考查了分式有意义的条件,解题的关键是掌握当函数表达式是分式时,考虑分式的分母不能为0.
6、B
【解析】
勾股数是满足a2+b2=c2 的三个正整数,据此进行判断即可.
【详解】
解:∵满足a2+b2=c2 的三个正整数,称为勾股数,
∴是勾股数的有①5、12、13;③3k、4k、5k(k为正整数).
故选:B.
本题主要考查了勾股定理的逆定理,一组勾股数扩大相同的整数倍得到三个数仍是一组勾股数.
7、A
【解析】
由多边形内角和定理求出∠A+∠B+∠E+∠F+∠CDE+∠BCD=720°①,由角平分线定义得出∠BCP=∠DCP,∠CDP=∠PDE,根据三角形内角和定理得出∠P+∠PCD+∠PDE=180°,得出2∠P+∠BCD+∠CDE=360°②,由①和②即可求出结果.
【详解】
在六边形 A BCDEF中,
∠A+∠B+∠E+∠F+∠CDE+∠BCD=(6-2)×180°=720°①,
CP、DP分別平分∠BCD、∠CDE,
∴∠BCP=∠DCP,∠CDP=∠PDE,
∠P+∠PCD+∠PDE=180°,
∴2(∠P+∠PCD+∠PDE)=360°,
即2∠P+∠BCD+∠CDE=360°②,
①-②得:∠A+∠B+∠E+∠F-2∠P=360°,
即α-2∠P=360°,
∴∠P=α-180°,
故选:A.
本题考查了多边形内角和定理、角平分线定义以及三角形内角和定理;熟记多边形内角和定理和三角形内角和定理是解题关键.
8、D
【解析】
直接利用公式法以及提取公因式法分解因式进而判断即可.
【详解】
解:A.,故此选项错误;
B.,故此选项错误;
C.,故此选项错误;
D.,正确.
故选D.
此题主要考查了提取公因式法以及公式法分解因式,正确应用公式是解题关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、1
【解析】
首先根据全等三角形判定的方法,判断出△AFG≌△AFC,即可判断出FG=FC,AG=AC,所以点F是CG的中点;然后根据点E是BC的中点,可得EF是△CBG的中位线,再根据三角形中位线定理,求出线段EF的长为多少即可.
【详解】
∵AD是∠BAC的平分线,
∴∠FAG=∠FAC,
∵CG⊥AD,
∴∠AFG=∠AFC=90°,
在△AFG和△AFC中,
,
∴△AFG≌△AFC,
∴FG=FC,AG=AC=4,
∴F是CG的中点,
又∵点E是BC的中点,
∴EF是△CBG的中位线,
∴.
故答案为:1.
本题考查了全等三角形的判定以及三角形的中位线定理,三角形的中位线平行于第三边,并且等于第三边的一半.
10、1
【解析】
根据菱形的对角线互相垂直平分的性质,利用对角线的一半,根据勾股定理求出菱形的边长,再根据菱形的四条边相等求出周长即可.
【详解】
解:如图,根据题意得AO=×8=4,BO=×6=3,
∵四边形ABCD是菱形,∴AB=BC=CD=DA,AC⊥BD.
∴△AOB是直角三角形.
∴.
∴此菱形的周长为:5×4=1
故答案为:1.
11、1
【解析】
根据等腰三角形的性质得出∠B=∠C,根据三角形内角和定理和已知得出5∠A=180°,求出即可.
【详解】
解:∵△ABC中,AB=AC,
∴∠B=∠C,
∵等腰三角形的顶角与一个底角度数的比值叫做等腰三角形的“特征值”,记作k,若k=,
∴∠A:∠B=1:2,
即5∠A=180°,
∴∠A=1°,
故答案为1.
本题考查了三角形内角和定理与等腰三角形的性质,解题的关键是能根据等腰三角形性质、三角形内角和定理与已知条件得出5∠A=180°.
12、1
【解析】
根据对角线互相平分的四边形是平行四边形可得OB=1cm时,四边形ABCD是平行四边形.
【详解】
当OB=1cm时,四边形ABCD是平行四边形,
∵BD=16cm,OB=1cm,
∴BO=DO,
又∵AO=OC,
∴四边形ABCD是平行四边形,
故答案为1.
本题考查了平行四边形的判定,熟练掌握平行四边形的判定方法是解题的关键.
13、
【解析】
本题是一道分段函数,当和是由收费与路程之间的关系就可以求出结论.
【详解】
由题意,得
当时,
;
当时,
,
∴,
故答案为:.
本题考查了分段函数的运用,解答时求出函数的解析式是关键.
三、解答题(本大题共5个小题,共48分)
14、特快列车的速度为100千米时,高铁的速度为250千米时.
【解析】
设特快列车的速度为x千米时,则高铁的速度为千米时,根据时间路程速度结合高铁比特快列车少用3小时,即可得出关于x的分式方程,解之经检验后即可得出结论.
【详解】
设特快列车的速度为x千米时,则高铁的速度为千米时,
根据题意得:,
解得:,
经检验,是原分式方程的解,
.
答:特快列车的速度为100千米时,高铁的速度为250千米时.
本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.
15、(1)CD=4,AD=16;(2)当t=3.6或10秒时,是直角三角形,理由见解析;(3)当t=7.2秒时,,理由见解析
【解析】
(1)根据CD=速度×时间列式计算即可得解,利用勾股定理列式求出AC,再根据AD=AC-CD代入数据进行计算即可得解;
(2)分①∠CDB=90°时,利用△ABC的面积列式计算即可求出BD,然后利用勾股定理列式求解得到CD,再根据时间=路程÷速度计算;②∠CBD=90°时,点D和点A重合,然后根据时间=路程÷速度计算即可得解;
(3)过点B作BF⊥AC于F,根据等腰三角形三线合一的性质可得CD=2CF,再由(2)的结论解答.
【详解】
解:(1)t=2时,CD=2×2=4,
∵∠ABC=90°,AB=16,BC=12,
∴AD=AC-CD=20-4=16;
(2)①∠CDB=90°时,
∴解得BD=9.6,
∴
t=7.2÷2=3.6秒;
②∠CBD=90°时,点D和点A重合,
t=20÷2=10秒,
综上所述,当t=3.6或10秒时,是直角三角形;
(3)如图,过点B作BF⊥AC于F,
由(2)①得:CF=7.2,
∵BD=BC,
∴CD=2CF=7.2×2=14.4,
∴t=14.4÷2=7.2,
∴当t=7.2秒时,,
本题考查了勾股定理,等腰三角形的判定与性质,三角形的面积,熟练掌握相关的知识是解题的关键
16、(1)见解析;(2)32
【解析】
(1)先求出四边形BFDE是平行四边形,再根据矩形的判定推出即可;
(2)根据勾股定理求出DE长,即可得出答案.
【详解】
证明:(1)∵四边形ABCD是平行四边形,
∴AB∥DC,
∵DF=BE,
∴四边形BFDE是平行四边形,
∵DE⊥AB,
∴∠DEB=90°,
∴四边形BFDE是矩形;
(2)∵AF平分∠DAB,
∴∠DAF=∠FAB,
∵平行四边形ABCD,
∴AB∥CD,
∴∠FAB=∠DFA,
∴∠DFA=∠DAF,
∴AD=DF=5,
在Rt△ADE中,DE=,
∴平行四边形ABCD的面积=AB•DE=4×8=32,
考查了平行四边形的性质,矩形的性质和判定等知识点,能综合运用定理进行推理是解此题的关键.
17、不等式组的解集为.
【解析】
首先解每个不等式,然后把每个解集在数轴上表示出来,确定不等式的解集的公共部分就是不等式组的解集.
【详解】
解不等式,得:,
解不等式,得:,
将不等式的解集表示在数轴上如下:
所以不等式组的解集为.
本题考查了不等式组的解法,把每个不等式的解集在数轴上表示出来向右画;,向左画,数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集有几个就要几个在表示解集时“”,“”要用实心圆点表示;“”,“”要用空心圆点表示.
18、(1),,;(2)见解析;
【解析】
(1)根据平均数的计算公式,求出八1班的平均分,得出的值,依据中位数的求法求得八2班的中位数,求得,看八2班成绩出现次数最多的,求得的值;
(2)通过观察比较,发现从平均数、方差上对于八2班有利,可以从这两个方面,提出支持的理由.
【详解】
解:(1)八(1)班的平均数:,
八(2)班成绩共10个数据,从小到大排列后,95、96处于之间,所以,是中位数,
八(2)班成绩共10个数据,其中93出现三次,出现次数最多,众数是93,
答:表中,,.
(2)八2班的平均分高于八1班,因此八2班成绩较好;
八2班的方差比八1班的小,因此八2班比八1班稳定.
考查平均数、中位数、众数、方差的意义及求法,理解并掌握各个统计量所反映一组数据的集中趋势或离散程度,则有利于对数据做出分析,做出判断.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、
【解析】
由一次函数的交点与二元一次方程组解的关系可知方程组的解是.
故答案为
20、
【解析】
分析: 等量关系为:原来人均单价-实际人均单价=3,把相关数值代入即可.
详解: 原来人均单价为,实际人均单价为,
那么所列方程为,
故答案为:
点睛: 考查列分式方程;得到人均单价的关系式是解决本题的关键.
21、
【解析】
可根据方程特点设,则原方程可化为-y=1,再去分母化为整式方程即可.
【详解】
设,则原方程可化为:-y=1,
去分母,可得1-y2=y,
即y2+y-1=1,
故答案为:y2+y-1=1.
本题考查用换元法解分式方程的能力.用换元法解一些复杂的分式方程是比较简单的一种方法,根据方程特点设出相应未知数,再将分式方程可化为整式方程.
22、55°或35°.
【解析】
试题分析:①若E在AD上,如图,∵BE是AD边上的高,∠EBD=20°,∴∠ADB=90°﹣20°=70°,∵AD=BD,∴∠DAB=∠ABD=55°;
②若E在AD的延长线上,如图,∵BE是AD边上的高,∠EBD=20°,∴∠EDB=90°﹣20°=70°,∵AD=BD,∴∠DAB=∠ABD=35°.故答案为55°或35°.
考点:1.平行四边形的性质;2.分类讨论.
23、
【解析】
根据七巧板中图形分别是等腰直角三角形和正方形计算PH的长,即FF'的长,作高线GG',根据直角三角形斜边中线的性质可得GG'的长,即AE的长,可得结论.
【详解】
解:如图:∵四边形MNQK是正方形,且MN=1,
∴∠MNK=45°,
在Rt△MNO中,OM=ON=,
∵NL=PL=OL=,
∴PN=,
∴PQ=,
∵△PQH是等腰直角三角形,
∴PH=FF'==BE,
过G作GG'⊥EF',
∴GG'=AE=MN=,
∴CD=AB=AE+BE=+=.
故答案为:.
本题主要考查了正方形的性质、七巧板、等腰直角三角形的性质及勾股定理等知识.熟悉七巧板是由七块板组成的,完整图案为一正方形:五块等腰直角三角形(两块小形三角形、一块中形三角形和两块大形三角形)、一块正方形和一块平行四边.
二、解答题(本大题共3个小题,共30分)
24、详见解析
【解析】
根据平行线的性质,利用全等三角形的判定定理(AAS)和性质,可得出结论.
【详解】
∵四边形ABCD是平行四边形,
∴AD=BC,AD//BC,∴∠DAE=∠CBF,
∵DE⊥AC于E,BF⊥AC于F,
∴∠DEA=∠BFC=90°,
在△AED和△BFC中,
,
∴△AED≌△BFC,
∴BF=DE.
考查了平行四边形的性质,以及全等三角形的性质与判定,解题关键是灵活运用其性质.
25、.
【解析】
首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两人恰好选择同一种支付方式的情况,再利用概率公式即可求得答案.
【详解】
解:将微信记为A、支付宝记为B、银行卡记为C,
画树状图如下:
∵共有9种等可能的结果,其中两人恰好选择同一种支付方式的有3种,
∴两人恰好选择同一种支付方式的概率为.
此题考查列表法与画树状图法,解题关键在于画出树状图.
26、(1)证明见解析;(2)应用:;
【解析】
试题分析:由折叠的性质可得AB=AG=AD,∠AGF=∠AGE=∠B=∠D=90°,再结合AF为△AGF和△ADF的公共边,从而证明△AGF≌△ADF,从而得出结论.
[应用]设FG=x,则FC=5-x,FE=3+x,在Rt△ECF中利用勾股定理可求出x的值,进而可得出答案.
试题解析:(1)由翻折得AB=AG,∠AGE=∠ABE=90°
∴∠AGF=90°
由正方形ABCD得 AB=AD
∴AG=AD
在Rt△AGF和Rt△ADF中,
∴Rt△AGF ≌ Rt△ADF
∴FG=FD
(2)[应用]设FG=x,则FC=5-x,FE=3+x,
在Rt△ECF中,EF2=FC2+EC2,即(3+x)2=(5-x)2+22,
解得x=.
即FG的长为.
由(1)得:FD=FG=,FC=5-=,BC=AB=5,BE=3
∴EC=5-3=2
∴ΔEFC的面积=
题号
一
二
三
四
五
总分
得分
班级
最高分
平均分
中位数
众数
方差
八(1)班
100
93
93
12
八(2)班
99
95
8.4
2024-2025学年天津市汉沽区名校九上数学开学质量跟踪监视模拟试题【含答案】: 这是一份2024-2025学年天津市汉沽区名校九上数学开学质量跟踪监视模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年陕西省安康市数学九年级第一学期开学质量跟踪监视模拟试题【含答案】: 这是一份2024-2025学年陕西省安康市数学九年级第一学期开学质量跟踪监视模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年江苏省数学九年级第一学期开学质量跟踪监视模拟试题【含答案】: 这是一份2024-2025学年江苏省数学九年级第一学期开学质量跟踪监视模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。