2024-2025学年山东省青岛市第十六中学九年级数学第一学期开学考试模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)已知,则有( )
A.B.C.D.
2、(4分)已知:如图,折叠矩形ABCD,使点B落在对角线AC上的点F处,若BC=4,AB=3,则线段CE的长度是( )
A.B.C.3D.2.8
3、(4分)估计的值在( )
A.2和3之间B.3和4之间
C.4和5之间D.5和6之间
4、(4分)已知平行四边形,下列条件中,不能判定这个平行四边形为菱形的是( )
A.B.C.平分D.
5、(4分)如图,在▱ABCD中,点E为AB的中点,F为BC上任意一点,把△BEF沿直线EF翻折,点B的对应点B′落在对角线AC上,则与∠FEB一定相等的角(不含∠FEB)有( )
A.2个B.3个C.4个D.5个
6、(4分)以下列各组数为三角形的边长,能构成直角三角形的是( )
A.1,2,3B.1,1,C.2,4,5D.6,7,8
7、(4分)在有理数中,分式有( )
A.1个B.2个C.3个D.4个
8、(4分)关于的不等式的解集在数轴上表示如下,则的取值范围是( )
A.B.C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)已知直线与反比例函数的图象交于A、B两点,当线段AB的长最小时,以AB为斜边作等腰直角三角形△ABC,则点C的坐标是__________.
10、(4分)若菱形的两条对角线长分别是6㎝和8㎝,则该菱形的面积是 ㎝1.
11、(4分)比较大小:2____3(填“ >、<、或 = ”).
12、(4分)直线y=3x+2沿y轴向下平移5个单位,则平移后的直线与y轴的交点坐标是_______.
13、(4分)若关于x的分式方程当的解为正数,那么字母a的取值范围是_____.
三、解答题(本大题共5个小题,共48分)
14、(12分)某公司对应聘者A,B,进行面试,并按三个方面给应聘者打分,每方面满分20分,最后打分结果如下表,
根据实际需要,公司将专业知识、工作经验和仪表形象三项成绩得分按6:3:1的比例确定各人的成绩,此时谁将被录用?
15、(8分)感知:如图①,在正方形中,是一点,是延长线上一点,且,求证:;
拓展:在图①中,若在,且,则成立吗?为什么?
运用:如图②在四边形中,,,,是上一点,且,,求的长.
16、(8分)如图,在平面直角坐标系中,直线与双曲线交于第一、三象限内的、两点,与轴交于点,过点作轴,垂足为,,,点的纵坐标为1.
(1)求反比例函数和一次函数的函数表达式;
(2)连接,求四边形的面积;
(3)在(1)的条件下,根据图像直接写出反比例函数的值小于一次函数的值时,自变量的取值范围.
17、(10分)如图,矩形ABCD 和正方形ECGF,其中E、H分别为AD、BC中点,连结AF、HG、AH.
(1)求证:;
(2)求证:;
18、(10分)某乡镇企业生产部有技术工人15人,生产部为了合理制定产品的每月生产定额,统计了15人某月的加工零件个数:
(1)写出这15人该月加工零件数的平均数、中位数和众数.
(2)假如生产部负责人把每位工人的月加工零件数定为260(件),你认为这个定额是否合理,为什么?
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)已知直线在轴上的截距是-2,且与直线平行,那么该直线的解析是______
20、(4分)如图,△ABC是等腰直角三角形,BC是斜边,将△ABP绕点A逆时针旋转后,能与△ACP′重合,如果AP=3,那么PP′=______.
21、(4分)如图,函数y1=﹣2x和y2=ax+3的图象相交于点A(﹣1,2),则关于x的不等式﹣2x>ax+3的解集是_____
22、(4分)若等式成立,则的取值范围是__________.
23、(4分)计算:=_______.
二、解答题(本大题共3个小题,共30分)
24、(8分)完成下面推理过程
如图,已知DE∥BC,DF、BE分别平分∠ADE、∠ABC,可推得∠FDE=∠DEB的理由:
∵DE∥BC(已知)
∴∠ADE= .( )
∵DF、BE分别平分∠ADE、∠ABC,
∴∠ADF= ,
∠ABE= .( )
∴∠ADF=∠ABE
∴DF∥ .( )
∴∠FDE=∠DEB. ( )
25、(10分)解方程:
(1)x2-3x+1=1;
(2)x(x+3)-(2x+6)=1.
26、(12分)如图1,在平面直角坐标系中,点O是坐标原点,四边形ABCO是菱形,点A的坐标为(﹣3,4),点C在x轴的正半轴上,直线AC交y轴于点M,AB边交y轴于点H,连接BM.
(1)菱形ABCO的边长
(2)求直线AC的解析式;
(3)动点P从点A出发,沿折线ABC方向以2个单位/秒的速度向终点C匀速运动,设△PMB的面积为S(S≠0),点P的运动时间为t秒,
①当0<t<时,求S与t之间的函数关系式;
②在点P运动过程中,当S=3,请直接写出t的值.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、A
【解析】
求出m的值,求出2)的范围5<m<6,即可得出选项.
【详解】
m=(-)×(-2),
=,
=×3=2
=,
∵,
∴5<<6,
即5<m<6,
故选A.
本题考查了二次根式的乘法运算和估计无理数的大小的应用,注意:5<
<6,题目比较好,难度不大.
2、B
【解析】
由于AE是折痕,可得到AB=AF,BE=EF,设出未知数.在Rt△EFC中利用勾股定理列出方程,通过解方程可得答案.
【详解】
设BE=x,
∵AE为折痕,∴AB=AF,BE=EF=x,∠AFE=∠B=90°,
Rt△ABC中,AC==5,∴Rt△EFC中,FC=5﹣3=2,EC=4﹣x,∴(4﹣x)2=x2+22,
解得:x=.
所以CE=4﹣.
故选B.
本题考查了折叠问题、勾股定理和矩形的性质;解题中,找准相等的量是正确解答题目的关键.
3、C
【解析】
由可知,再估计的范围即可.
【详解】
解:,.
故选:C.
本题考查了实数的估算,熟练的确定一个无理数介于哪两个整数之间是解题的关键.
4、A
【解析】
菱形的判定有以下三种:①一组邻边相等的平行四边形是菱形;②四边相等的四边形是菱形;③对角线互相垂直的平行四边形是菱形.据此判断即可.
【详解】
解:A、由平行四边形的性质可得AB=CD,所以由AB=CD不能判定平行四边形ABCD是菱形,故A选项符合题意;
B、一组邻边相等的平行四边形是菱形,故B选项不符合题意.
C、由一条对角线平分一角,可得出一组邻边相等,也能判定为菱形,故C选项不符合题意;
D、对角线互相垂直的平行四边形是菱形,故D选项不符合题意;
故选:A.
本题考查菱形的判定方法,熟记相关判定即可正确解答.
5、C
【解析】
由翻折的性质可知,EB=EB',由E为AB的中点,得到EA=EB',根据三角形外角等于不相邻的两内角之和,找到与∠FEB相等的角,再根据AB∥CD,也可得到∠FEB=∠ACD.
【详解】
解:由翻折的性质可知:EB=EB',∠FEB=∠FEB';
∵E为AB的中点,
∴AE=BE=EB',
∴∠EAB'=∠EB'A,
∵∠BEB'=∠EAB'+∠EB'A,
∴2∠FEB=2∠EAB=2∠EB'A,
∴∠FEB=∠EAB=∠EB'A,
∵AB∥CD,
∴∠B'AE=∠ACD,
∴∠FEB=∠ACD,
∴与∠FEB相等的角有∠FEB',∠EAB',∠EB'A,∠ACD,
∴故选C.
此题考查翻折的性质,EA=EB'是正确解答此题的关键
6、B
【解析】
由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可.
【详解】
A、12+22≠32,故不是直角三角形,故此选项错误;
B、12+12=()2,故是直角三角形,故此选项正确;
C、22+42≠52,故不是直角三角形,故此选项错误;
D、62+72≠82,故不是直角三角形,故此选项错误.
故选B.
本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.
7、A
【解析】
判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式.
【详解】
分母中不含字母,不是分式;
分母中含字母,是分式;
分母中不含字母,不是分式;
分母中不含字母,不是分式;
故选A.
本题考查了分式的概念,熟练掌握分式的判断依据是解题的关键.
8、C
【解析】
先根据在数轴上表示不等式解集的方法求出不等式的解集,再列出关于a的方程,求出a的取值范围即可.
【详解】
解:由数轴上表示不等式解集的方法可知,此不等式的解集为x≤0,解不等式2x-a≤-1得,x≤,即=0,解得a=1.故选C.
本题考查的是在数轴上表示不等式的解集,熟知实心圆点与空心圆点的区别是解答此题的关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、或
【解析】
联立方程组,求出A、B的坐标,分别用k表示,然后根据等腰直角三角形的两直角边相等求出k的值,即可求出结果.
【详解】
由题可得,
可得,
根据△ABC是等腰直角三角形可得:
,
解得,
当k=1时,点C的坐标为,
当k=-1时,点C的坐标为,
故答案为或.
本题主要考查了一次函数与反比例函数的综合应用,利用好等腰直角三角形的条件很重要.
10、14
【解析】
已知对角线的长度,根据菱形的面积计算公式即可计算菱形的面积.
解:根据对角线的长可以求得菱形的面积,
根据S=ab=×6×8=14cm1,
故答案为14.
11、<
【解析】
试题分析:将两式进行平方可得:=12,=18,因为12<18,则<.
12、(0,-3).
【解析】
直线y=3x+2沿y轴向下平移5个单位后对应的解析式为y=3x+2-5,
即y=3x-3,
当x=0时,y=-3,
即与y轴交点坐标为(0,-3).
13、a>1且a≠3
【解析】
首先根据题意求解x的值,再根据题意可得分式方程的解大于0,注意分式方程的增根问题.
【详解】
解:去分母得:3x﹣a=x﹣1,
解得:x= ,
由分式方程的解为正数,得到>0,≠1,
解得:a>1且a≠3,
故答案为:a>1且a≠3
本题主要考查分式方程的解参数问题,这类题目特步要注意分式方程的增根问题.
三、解答题(本大题共5个小题,共48分)
14、B应被录用
【解析】
根据加权平均数计算A,B两名应聘者的最后得分,看谁的分数高,分数高的就录用.
【详解】
解:∵6:3:1=60%:30%:10%,
∴A的最后得分为,
B的最后得分为,
∵16.7>15,
∴B应被录用.
本题考查了加权平均数的概念,在本题中专业知识、工作经验、仪表形象的权重不同,因而不能简单地平均,而应将各人的各项成绩乘以权之后才能求出最后的得分.
15、(1)见解析;(2)GE=BE+GD成立,理由见解析;(3)
【解析】
(1)利用已知条件,可证出△BCE≌△DCF(SAS),即可得到CE=CF;
(2)借助(1)的结论得出∠BCE=∠DCF,再通过角的计算得出∠GCF=∠GCE,由SAS可得△ECG≌△FCG,则EG=GF,从而得出GE=DF+GD=BE+GD;
(3)过C作CG⊥AD,交AD延长线于G,先证四边形ABCG是正方形(有一组邻边相等的矩形是正方形),再设DE=x,利用(1)、(2)的结论,在Rt△AED中利用勾股定理构造方程即可求出DE.
【详解】
(1)证明:如图①,在正方形ABCD中,BC=CD,∠B=∠ADC=90°,
∴∠CDF=90°,即∠B=∠CDF =90°,
在△BCE和△DCF中,
,
∴△BCE≌△DCF(SAS),
∴CE=CF;
(2)解:如图①,GE=BE+GD成立,理由如下:
由(1)得△BCE≌△DCF,
∴∠BCE=∠DCF,
∴∠ECD+∠ECB=∠ECD+∠FCD,
即∠ECF=∠BCD=90°,
又∵∠GCE=45°,
∴∠GCF=∠ECF−∠ECG=45°,则∠GCF=∠GCE,
在△GEC和△GFC中,
,
∴△GEC≌△GFC(SAS),
∴EG=GF,
∴GE=DF+GD=BE+GD;
(3)解:如图②,过C作CG⊥AD于G,
∴∠CGA=90°,
在四边形ABCD中,AD∥BC,∠A=∠B=90°,
∴四边形ABCG为矩形,
又∵AB=BC,
∴四边形ABCG为正方形,
∴AG=BC=AB=16,
∵∠DCE=45°,由(1)和(2)的结论可得:ED=BE+DG,
设DE=x,
∵,
∴AE=12,DG=x−4,
∴AD=AG−DG=20−x
在Rt△AED中,
由勾股定理得:DE2=AD2+AE2,
即x2=(20−x)2+122
解得:,
即.
本题是一道几何综合题,内容主要涉及全等三角形的判定与性质和勾股定理的应用,重点考查学生的数学学习能力,是一道好题.
16、(1)反比例函数解析式为;一次函数解析式为;(2)1;
(3)或.
【解析】
(1)根据BM⊥轴,可知△BMO为等腰直角三角形,可求得点B的坐标,将其代入反比例函数,求出,即可知反比例函数解析式,已知点A的纵坐标,代入求得的反比例函数解析式,可求得点A的横坐标,再利用待定系数法,即可求得一次函数解析式;
(2)一次函数与y轴交于点C,可求得C的坐标,易证四边形MBOC是平行四边形,OM即为高,四边形的面积即可求解;
(3)要使反比例函数的值小于一次函数的值,反比例函数图像一定在一次函数图像的下方,观察图像,即可求解自变量的取值范围.
【详解】
解:(1)∵BM⊥轴,且BM=OM,
∴△BMO为等腰直角三角形,
∵OB=,
∴BM=OM=2,
∴点B的坐标为(-2,-2),
∵点B在双曲线上,代入 ,可求得,
故反比例函数的解析式为,
∵点A 也是反比例函数上的点,且A点的纵坐标为1,代入,
求得A点坐标为(1,1),
∵点A、B也是直线上的点,
∴ ,解得 .
故一次函数的解析式为.
(2)∵ 一次函数与轴交于点C, 将代入解析式,可求得C点的坐标为(0,2)
∴ BM=OC,又∵BM//OC,
∴四边形MBOC是平行四边形,OM即为平行四边形MBOC的高,
∴四边形MBOC的面积,
故四边形MBOC的面积为1.
(3)根据图像观察可知,要使反比例函数的值小于一次函数的值时,反比例函数图像一定在一次函数图像的下方,包括A(1,1)的右侧,以及B(-2,-2)到轴这两部分,从而可知,自变量的取值范围是:或.
故答案为:或.
本题目考查函数的综合,难度一般,涉及知识点有反比例函数、一次函数,待定系数法等,熟练掌握两种函数的性质是顺利解题的关键.
17、(1)详见解析;(2)详见解析.
【解析】
(1)根据题意可先证明四边形AHCE为平行四边形,再根据正方形的性质得到∴,,故可证明四边形AHGF是平行四边形,即可求解;
(2)根据四边形AHGF是平行四边形,得,根据四边形ABCD是矩形,可得 ,再根据平角的性质及等量替换即可证明.
【详解】
(1)证明:∵四边形ABCD是矩形,且E、H分别为AD、BC的中点,
∴,,
∴四边形AHCE为平行四边形,
∴,,
又∵四边形ECGF为正方形,
∴,,
∴,,
∴四边形AHGF是平行四边形,
∴;
(2)证明:∵四边形AHGF是平行四边形,
∴,
∵四边形ABCD是矩形,
∴,
∴,
又∵,
∴;
此题主要考查正方形的性质与证明,解题的关键是熟知特殊平行四边形的性质定理.
18、 (1)平均数:260(件) 中位数:240(件) 众数:240(件)(2)不合理
【解析】
试题解析:解:(1)这15个人的平均数是:,
中位数是:240,
众数是240;
(2)不合理,因为这15个人中只有4个人可以完成任务,大部分人都完不成任务.
考点:平均数、中位数、众数
点评:本题主要考查了平均数、中位数、众数. 平均数、中位数、众数都反映了一组数据的集中趋势,但是平均数容易受到这组数据中的极端数数的影响,所以中位数和众数更具有代表性.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、
【解析】
【分析】根据一次函数的性质可求得.对于直线在轴上的截距是b;k是斜率,决定直线的位置关系.
【详解】因为,已知直线在轴上的截距是-2,
所以,b=-2.
又直线与直线平行,
所以,k=3.
故答案为:
【点睛】本题考核知识点:一次函数. 解题关键点:熟记一次函数解析式中系数的意义.
20、3
【解析】
根据旋转的性质,可得∠BAC=∠PAP′=90°,AP=AP′,故△APP′是等腰直角三角形,由勾股定理得PP′的大小.
【详解】
解:根据旋转的性质,可得∠BAC=∠PAP′=90°,AP=AP′,
∴△APP′是等腰直角三角形,
由勾股定理得PP′=.
故答案为:.
本题考查了图形的旋转变化,旋转得到的图形与原图形全等,解答时要分清旋转角和对应线段.
21、x<﹣1.
【解析】
以交点为分界,结合图象写出不等式-2x>ax+3的解集即可.
【详解】
解:∵函数y1=-2x和y2=ax+3的图象相交于点A(-1,2),
∴不等式-2x>ax+3的解集为x<-1.
故答案为x<-1.
此题考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.
22、
【解析】
根据二次根式有意义的条件,列出不等式组,即可得解.
【详解】
根据题意,得
解得.
此题主要考查二次根式有意义的条件,熟练掌握,即可解题.
23、3
【解析】
先把化成,然后再合并同类二次根式即可得解.
【详解】
原式=2.
故答案为
本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行然后合并同类二次根式.
二、解答题(本大题共3个小题,共30分)
24、∠ABC;两直线平行,同位角相等;∠ADE;∠ABC;角平分线定义;DF∥BE;同位角相等,两直线平行;两直线平行,内错角相等
【解析】
根据平行线的性质得出∠ADE=∠ABC,根据角平分线定义得出∠ADF=∠ADE,∠ABE=∠ABC,推出∠ADF=∠ABE,根据平行线的判定得出DF∥BE即可.
【详解】
∵DE∥BC(已知),
∴∠ADE=∠ABC(两直线平行,同位角相等),
∵DF、BE分别平分ADE、∠ABC,
∴∠ADF=∠ADE,
∠ABE=∠ABC(角平分线定义),
∴∠ADF=∠ABE,
∴DF∥BE(同位角相等,两直线平行),
∴∠FDE=∠DEB(两直线平行,内错角相等).
故答案是:∠ABC ,两直线平行,同位角相等,∠ADE ,∠ABC,角平分线定义,BE,同位角相等,两直线平行,两直线平行,内错角相等.
考查了平行线的性质和判定的应用,能熟记平行线的性质和判定定理是解此题的关键.
25、(4)x4=,x2=;(2)x4=-3,x2=2.
【解析】
试题分析:(4)直接利用公式法求出x的值即可;
(2)先把原方程进行因式分解,再求出x的值即可.
试题解析:(4)∵一元二次方程x2-3x+4=4中,a=4,b=-3,c=4,
∴△=b2-4ac=(-3)2-4×4×4=3.
∴x=.
即x4=,x2=;
(2)∵因式分解得 (x+3)(x-2)=4,
∴x+3=4或x-2=4,
解得 x4=-3,x2=2.
考点:4.解一元二次方程-因式分解法;2.解一元二次方程-公式法.
26、(1)5;(2)直线AC的解析式y=﹣x+;(3)见解析.
【解析】
(1)Rt△AOH中利用勾股定理即可求得菱形的边长;
(2)根据(1)即可求的OC的长,则C的坐标即可求得,利用待定系数法即可求得直线AC的解析式;
(3)根据S△ABC=S△AMB+S△BMC求得M到直线BC的距离为h,然后分成P在AM上和在MC上两种情况讨论,利用三角形的面积公式求解.
【详解】
(1)Rt△AOH中,
,
所以菱形边长为5;
故答案为5;
(2)∵四边形ABCO是菱形,
∴OC=OA=AB=5,即C(5,0).
设直线AC的解析式y=kx+b,函数图象过点A、C,得
,解得,
直线AC的解析式;
(3)设M到直线BC的距离为h,
当x=0时,y=,即M(0,),,
由S△ABC=S△AMB+SBMC=AB•OH=AB•HM+BC•h,
×5×4=×5×+×5h,解得h=,
①当0<t<时,BP=BA﹣AP=5﹣2t,HM=OH﹣OM=,
S=BP•HM=×(5﹣2t)=﹣t+;
②当2.5<t≤5时,BP=2t﹣5,h=,
S=BP•h=×(2t﹣5)=t﹣,
把S=3代入①中的函数解析式得,3=﹣t+,
解得:t=,
把S=3代入②的解析式得,3=t﹣,
解得:t=.
∴t=或.
本题考查了待定系数法求一次函数的解析式以及菱形的性质,根据三角形的面积关系求得M到直线BC的距离h是关键.
题号
一
二
三
四
五
总分
得分
专业知识
工作经验
仪表形象
A
14
18
12
B
18
16
11
加工件数
540
450
300
240
210
120
人数
1
1
2
6
3
2
山东省临沂第十六中学2024-2025学年九年级上学期开学考试数学试题: 这是一份山东省临沂第十六中学2024-2025学年九年级上学期开学考试数学试题,共6页。试卷主要包含了选择题等内容,欢迎下载使用。
2024-2025学年山东省临沂市野店中学数学九年级第一学期开学质量检测模拟试题【含答案】: 这是一份2024-2025学年山东省临沂市野店中学数学九年级第一学期开学质量检测模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年山东省临沂市青云中学数学九年级第一学期开学检测模拟试题【含答案】: 这是一份2024-2025学年山东省临沂市青云中学数学九年级第一学期开学检测模拟试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。