2024-2025学年广东省梅州市梅江实验中学九年级数学第一学期开学学业质量监测试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图所示图形中既是中心对称图形,又能镶嵌整个平面的有( )
A.①②③④B.①②③C.②③D.③
2、(4分)下列各式中,运算正确的是
A.B.C.D.
3、(4分)甲、乙、丙三种糖果的售价分别为每千克6元、7元、8元,若将甲种8千克,乙种10千克,丙种3千克混在一起,则售价应定为每千克( )
A.7元B.6.8元C.7.5元D.8.6元
4、(4分)分式方程有增根,则的值为
A.0和3B.1C.1和D.3
5、(4分)某人匀速跑步到公园,在公园里某处停留了一段时间,再沿原路匀速步行回家,此人离家的距离y与时间x的关系的大致图象是
A.B.C.D.
6、(4分)如图是九(1)班45名同学每周课外阅读时间的频数直方图(每组含前一个边界值,不含后一个边界值).由图可知,人数最多的一组是( )
A.2~4小时B.4~6小时C.6~8小时D.8~10小时
7、(4分)用一条直线 m 将如图 1 的直角铁皮分成面积相等的两部分.图 2、图 3 分别是甲、乙两同学给出的作法,对于两人的作法判断正确的是( )
A.甲正确,乙不正确B.甲不正确,乙正确
C.甲、乙都正确D.甲、乙都不正确
8、(4分)方程①=1;②x2=7;③x+y=1;④xy=1.其中为一元二次方程的序号是( )
A.①B.②C.③D.④
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,D是△ABC内一点,BD⊥CD,AD=6,BD=4,CD=3,E、F、G、H分别是AB、AC、CD、BD的中点,则四边形EFGH的周长是 .
10、(4分)如图,我们把一个半圆与抛物线的一部分合成的封闭图形称为“蛋圆”,点A、B、C、D分别是“蛋圆”与坐标轴的交点,AB为半圆的直径,且抛物线的解析式为,则半圆圆心M的坐标为______.
11、(4分)如图,在Rt△ABC中,∠ACB=90°,D是AB的中点,若BC=BD,则∠A=_____度.
12、(4分)已知a+b=3,ab=﹣4,则a2b+ab2的值为_____.
13、(4分)二次根式中,x的取值范围是 .
三、解答题(本大题共5个小题,共48分)
14、(12分)已知一次函数y1=3x-3的图象与反比例函数y2=的图象交于点A(a,3),B(-1,b).
(1)求a,b的值和反比例函数的表达式.
(2)设点P(h,y1),Q(h,y2)分别是两函数图象上的点.
①试直接写出当y1>y2时h的取值范围;
②若y2- y1=3,试求h的值.
15、(8分)如图,直线y= x+6分别与x轴、y轴交于A、B两点:直线y= x与AB于点C,与过点A且平行于y轴的直线交于点D.点E从点A出发,以每秒1个单位的进度沿x轴向左运动.过点E作x轴的垂线,分別交直线AB、OD于P、Q两点,以PQ为边向右作正方形PQMN.设正方形PQMN与△ACD重叠的图形的周长为L个单位长度,点E的运动时间为t(秒).
(1)直接写出点C和点A的坐标.
(2)若四边形OBQP为平行四边形,求t的值.
(3)0
(1)写出B点的坐标 ;
(2)求抛物线的函数解析式;
(3)若抛物线上存在一点P,使得△POC的面积是△BOC的面积的2倍,求点P的坐标;
(4)点M是线段BC上一点,过点M作x轴的垂线交抛物线于点D,求线段MD长度的最大值.
17、(10分)先化简,再求值:,其中是不等式的正整数解.
18、(10分)某校为了了解学生的安全意识,在全校范围内随机抽取部分学生进行问卷调查.根据调查结果,把学生的安全意识分成“淡薄”、“一般”、“较强”、“很强”四个层次,并绘制成如下两幅尚不完整的统计图,如图所示:
根据以上信息,解答下列问题:
(1)这次调查一共抽取了______名学生,将条形统计图补充完整;
(2)扇形统计图中,“较强”层次所占圆心角的大小为______°;
(3)若该校有3200名学生,现要对安全意识为“淡薄”、“一般”的学生强化安全教育,根据调查结果,请你估计全校需要强化安全教育的学生人数.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)下面是某校八年级(1)班一组女生的体重(单位:kg)36 35 45 42 33 40 42,这组数据的平均数是____,众数是_____,中位数是_____.
20、(4分)已知的面积为27,如果,,那么的周长为__________.
21、(4分)计算−的结果为______
22、(4分)不等式2x-1>x解集是_________.
23、(4分)若代数式有意义,则实数的取值范围______________
二、解答题(本大题共3个小题,共30分)
24、(8分)计算
(1) (2)分解因式
(3)解方程:.
25、(10分)计算:6﹣5﹣+3.
26、(12分)某单位欲从内部招聘管理人员一名,对甲、乙、丙三名候选人进行了笔试和面试两项测试,三人的测试成绩如下表所示:
根据录用程序,组织200名职工对三人利用投票推荐的方式进行民主评议,三人得票率(没有弃权票,每位职工只能推荐1人)如扇形图所示,每得一票记作1分.
(l)如果根据三项测试的平均成绩确定录用人选,那么谁将被录用(精确到 0.01 )?
(2)根据实际需要,单位将笔试、面试、民主评议三项测试得分按5 : 2 : 3的比例确定个人成绩,那么谁将被录用?
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
当围绕一点拼在一起的几个多边形的内角和为360°时,就能够拼成一个平面图形.符合此条件的中心对称图形即可选.
【详解】
正三角形不是中心对称图形,圆是中心对称图形但不能镶嵌,正六边形和平行四边形是中心对称图形也能镶嵌.
故选C
判断中心对称图形是要寻找对称中心,图形旋转180度后与原图形重合.当围绕一点拼在一起的几个多边形的内角和为360°时,就能够拼成一个平面图形.
2、D
【解析】
根据合并同类项法则、同底数幂除法法则、幂的乘方的运算法则逐项进行判断即可得.
【详解】
A、,故A选项错误;
B、、不是同类项,不能合并,故B选项错误;
C、,故C选项错误;
D、,故D选项正确,
故选D.
本题考查了合并同类项、同底数幂除法、幂的乘方等,熟练掌握各运算的运算法则是解题的关键.
3、B
【解析】
根据加权平均数的计算方法:先求出所有糖果的总钱数,再除以糖果的总质量,即可得出答案.
【详解】
售价应定为:≈6.8(元);
故选B.
本题考查的是加权平均数的求法.本题易出现的错误是对加权平均数的理解不正确,而求6、7、8这三个数的平均数.
4、D
【解析】
等式两边同乘以最简公分母后,化简为一元一次方程,因为有增根可能为x1=1或x1=﹣1分别打入一元一次方程后求出m,再验证m取该值时是否有根即可.
【详解】
∵分式方程-1=有增根,
∴x﹣1=0,x+1=0,
∴x1=1,x1=﹣1.
两边同时乘以(x﹣1)(x+1),原方程可化为x(x+1)﹣(x﹣1)(x+1)=m,
整理得,m=x+1,
当x=1时,m=1+1=2;
当x=﹣1时,m=﹣1+1=0,
当m=0,方程无解,
∴m=2.
故选D.
5、B
【解析】
图象应分三个阶段,
第一阶段:匀速跑步到公园,在这个阶段,离家的距离随时间的增大而增大;
第二阶段:在公园停留了一段时间,这一阶段离家的距离不随时间的变化而改变.故D错误;
第三阶段:沿原路匀速步行回家,这一阶段,离家的距离随时间的增大而减小,故A错误,并且这段的速度小于于第一阶段的速度,则C错误.
故选B
考点:函数的图象
本题考查了函数的图象,理解每阶段中,离家的距离与时间的关系,根据图象的斜率判断运动的速度是解决本题的关键.
6、B
【解析】
试题分析:根据条形统计图可以得到哪一组的人数最多,从而可以解答本题.
由条形统计图可得,人数最多的一组是4~6小时,频数为22,
考点:频数(率)分布直方图
7、C
【解析】
根据图形中所画出的虚线,可以利用图形中的长方形、梯形的面积比较得出直线两旁的面积的大小关系.
【详解】
如图:图形2中,直线m经过了大长方形和小长方形的对角线的交点,所以两旁的图形的面积都是大长方形和小长方形面积的一半,所以这条直线把这个图形分成了面积相等的两部分,即甲做法正确;
图形3中,经过大正方形和图形外不添补的长方形的对角线的交点,直线两旁的面积都是大正方形面积的一半-添补的长方形面积的一半,所以这条直线把这个图形分成了面积相等的两部分,即乙做法正确.
故选C.
此题主要考查了中心对称,根据图形中的割补情况,抓住经过对角线的交点的直线都能把长方形分成面积相等的两部分这一特点,即可解决问题.
8、B
【解析】
本题根据一元二次方程的定义解答.
【详解】
解:其中①为分式方程,②为一元二次方程,③为二元一次方程,④为二元二次方程,
故选B.
本题主要考查一元二次方程的定义,判断一个方程是否是一元二次方程,首先要看是否是整式方程,然后看化简后是否是只含有一个未知数且未知数的最高次数是2.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、1.
【解析】
利用勾股定理列式求出BC的长,再根据三角形的中位线平行于第三边并且等于第三边的一半求出EH=FG=AD,EF=GH=BC,然后代入数据进行计算即可得解:
∵BD⊥CD,BD=4,CD=3,∴.
∵E、F、G、H分别是AB、AC、CD、BD的中点,∴EH=FG=AD,EF=GH=BC.
∴四边形EFGH的周长=EH+GH+FG+EF=AD+BC.
又∵AD=6,∴四边形EFGH的周长=6+5=1.
10、(1,0).
【解析】
当y=0时,,解得:x1=﹣1,x2=3,故A(﹣1,0),B(3,0),则AB的中点为:(1,0).
故答案为(1,0).
11、1
【解析】
根据直角三角形斜边上的中线等于斜边的一半可得CD=BD,再由BC=BD,可得CD=BC=BD,可得△BCD是等边三角形,再根据等边三角形的性质即可求解.
【详解】
解:∵在Rt△ABC中,∠ACB=90°,D是AB的中点,
∴CD=BD,
∵BC=BD,
∴CD=BC=BD,
∴△BCD是等边三角形,
∴∠B=60°,
∴∠A=1°.
故答案为:1.
考查了直角三角形的性质,等边三角形的判定与性质,关键是证明△BCD是等边三角形.
12、﹣1
【解析】
直接提取公因式ab,进而将已知代入求出即可.
【详解】
∵a+b=3,ab=-3,
∴a2b+ab2=ab(a+b)=4×(-3)=-1.
故答案为-1
此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.
13、.
【解析】
根据二次根式被开方数必须是非负数的条件,要使在实数范围内有意义,必须.
三、解答题(本大题共5个小题,共48分)
14、(1)a=2 ,b=-6,y2=;(2)①-1<h<0 或 h>2,②h .
【解析】
(1)把A(a,3),B(-1,b)两点代入一次函数解析式中即可求出a,b的值,则可求出反比例函数的表达式(2)由图像可直接判断y1>y2时h的取值范围,把两表达式代入y1>y2中,解出h即可
【详解】
(1)∵点 A(a,3),B(-1,b)在一次函数 y1=3x-3 的图象上
∴a=2 b=-6
∴m=6 即反比例函数表达式为 y2=
(2)①由图象可知:当 y1>y2 时,-1<h<0 或 h>2
②∵ y2-y1=2即 ∴ =3h
∴h
本题考查了反比例函数与一次函数图象的交点问题,待定系数法求函数解析式,难度中等.
15、(1),;(2)2;(3).
【解析】
(1)把y= x+6和 y= x联立组成方程组,解方程组求得方程组的解,即可得点C的坐标;在直线y= x+6中,令y=0,求得x的值,即可得点A的坐标;(2)用t表示出点P、Q的坐标,求得PQ的长,由条件可知,BO∥QP,若使四边形OBQP为平行四边形,必须满足OB=QP,由此可得,即可求得t值;(3)由题意可知,正方形PQMN与△ACD重叠的图形是矩形,由此求得L与t之间的函数解析式即可.
【详解】
(1)C的坐标为( ),A的坐标为(8,0);
(2)∵点B直线y= x+6与y轴的交点,
∴B(0,6),
∴OB=6,
∵A的坐标为(8,0),
∴OA=8,
由题意可得,OE=8-t,
∴P(8-t,),Q(8-t,)
∴=10-2t,
由条件可知,BO∥QP,若使四边形OBQP为平行四边形,必须满足OB=QP,
所以有 ,解得t=2;
(3)当0<t<5时, .
本题是一次函数与结合图形的综合题,根据题意求得QP=10-2t是解决问题的关键.
16、(1)B(3,0);(2)y=x2−2x−3;(3)P(6,21)或(−6,45);(4).
【解析】
(1)函数的对称轴为:x=1,点A(−1,0),则点B(3,0);
(2)用两点式求解即可;
(3)△POC的面积是△BOC的面积的2倍,则|xP|=2OB=6,即可求解;
(4)易得直线BC的表达式,设出点M(x,x−3),则可得MD=x−3−(x2−2x−3)=−x2+3x,然后求二次函数的最值即可.
【详解】
解:(1)函数的对称轴为:x=1,点A(−1,0),则点B(3,0),
故答案为(3,0);
(2)函数的表达式为:y=(x+1)(x−3)=x2−2x−3;
(3)△POC的面积是△BOC的面积的2倍,则|xP|=2OB=6,
当x=6时,y=36−12−3=21,
当x=−6时,y=36+12−3=45,
故点P(6,21)或(−6,45);
(4)∵B(3,0),C(0,-3),
易得直线BC的表达式为:y=x−3,
设点M(x,x−3),则点D(x,x2−2x−3),
∴MD=x−3−(x2−2x−3)=−x2+3x,
∵−1<0,
∴MD有最大值,
∴当x=时,其最大值为:.
本题考查的是二次函数综合运用,涉及到待定系数法求函数解析式,图形的面积计算以及二次函数的最值问题等,难度不大,熟练掌握相关知识点即可解答.
17、1.
【解析】
将原式被除式括号中两项通分并利用同分母分式的减法法则计算,除式分子利用完全平方公式分解因式,分母利用平方差公式分解因式,然后利用除以一个数等于乘以这个数的倒数将除法运算化为乘法运算,约分得到最简结果,再由关于x的不等式求出解集得到x的范围,在范围中找出正整数解得到x的值,将x的值代入化简后的式子中计算,即可得到原式的值.
【详解】
解:原式=
=
的正整数解为
但
所以
∴原式的值
此题考查一元一次不等式的整数解,分式的化简求值,解题关键在于掌握运算法则.
18、(1)200,t图见解析;(2)108;(3)估计全校需要强化安全教育的学生人数为800人
【解析】
(1)用条形统计图中“一般”层次的人数除以扇形统计图中“一般”层次所占百分比即可求出抽取的人数,然后用总人数减去其它三个层次的人数即得“较强”层次的人数,进而可补全条形统计图;
(2)用“较强”层次的人数除以总人数再乘以360°即可求出结果;
(3)用3200乘以样本中“淡薄”和“一般”层次所占的百分比即可.
【详解】
解:(1)30÷15%=200,所以这次调查一共抽取了200名学生;
较强层次的人数为200-20-30-90=60(人),条形统计图补充为:
故答案为:200;
(2)扇形统计图中,“较强”层次所占圆心角=360°×=108°;
故答案为:108;
(3)3200×=800,所以估计全校需要强化安全教育的学生人数为800人.
本题考查了条形统计图和扇形统计图以及利用样本估计总体的思想,属于常考题型,正确理解题意、读懂统计图提供的信息、弄清二者的联系是解题的关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、
【解析】
分别利用平均数、众数及中位数的定义求解后即可得出答案.
【详解】
解:将数据重新排列为33、35、36、40、42、42、45,
所以这组数据的平均数为,
众数为、中位数为,
故答案为:、、.
此题考查了平均数、众数和中位数,一组数据中出现次数最多的数据叫做这组数据的众数.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.平均数是指在一组数据中所有数据之和再除以总个数.
20、1
【解析】
过点A作交BC于点E,先根据含1°的直角三角形的性质得出,设,则,根据的面积为27建立方程求出x的值,进而可求出AB,CD的长度,最后利用周长公式求解即可.
【详解】
过点A作交BC于点E,
∵,,
.
∵,
∴设,则.
∵的面积为27,
,
即,
解得或(舍去),
∴,
∴的周长为.
故答案为:1.
本题主要考查含1°的直角三角形的性质及平行四边形的周长和面积,掌握含1°的直角三角形的性质并利用方程的思想是解题的关键.
21、-1
【解析】
试题分析:由分式的加减运算法则可得:== -1
考点:分式的运算
点评:此题是简单题,分式的加减运算,分母相同的,分子直接相加减;分母不用的要先通分,然后再计算.
22、x>1
【解析】
将不等式未知项移项到不等式左边,常数项移项到方程右边,合并后将x的系数化为1,即可求出原不等式的解集.
【详解】
解:2x-1>x,
移项得:2x-x>1,
合并得:x>1,
则原不等式的解集为x>1.
故答案为:x>1
此题考查了一元一次不等式的解法,解一元一次不等式的步骤为:去分母,去括号,移项,合并同类项,将x的系数化为1求出解集.
23、
【解析】
根据二次根式有意义的条件列出不等式,解不等式即可.
【详解】
解:由题意得,x﹣1≥0,
解得:x≥1
故答案为:x≥1.
本题考查的是二次根式有意义的条件,掌握二次根式中的被开方数必须是非负数是解题的关键.
二、解答题(本大题共3个小题,共30分)
24、① ;②;③无解
【解析】
(1)分别求出各不等式的解集,再根据小大大小中间找求出其公共解集即可;
(1)首先利用平方差公式进行分解,再利用完全平方公式进行二次分解即可;
(3)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.
【详解】
(1)
由①得x≥-1,
由②得x<1,
原不等式的解为-1≤x<1.
(1)原式=(a1+4)1-(4a)1,
=(a1+4+4a)(a1+4-4a),
=(a+1)1(a-1)1.
(3)去分母得:1-1x=1x-4-3,
移项合并得:4x=8,
解得:x=1,
经检验x=1是增根,分式方程无解.
(1)本题考查的是解一元一此不等式组,解答此题的关键是熟知解一元一此不等式组应遵循的法则,同大取较大,同小取较小,小大大小中间找,大大小小解不了.
(1)此题主要考查了公式法分解因式,关键是熟练掌握平方差公式:a1-b1=(a+b)(a-b),完全平方公式:a1±1ab+b1=(a±b)1.
(3)此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.
25、2
【解析】
把同类二次根式分别合并即可.
【详解】
6﹣5﹣+3
=(6﹣5)+(﹣1+3)
=+2.
考查二次根式的加减法,二次根式加减法一般过程为:先把各个二次根式化成最简二次根式,再把同类二次根式分别合并.
26、(1)候选人乙将被录用;(2)候选人丙将被录用.
【解析】
(1)先根据扇形统计图中的数据即可求得甲、乙、丙的民主评议得分,再根据平均数的概念求得甲、乙、丙的平均成绩,进行比较;
(2)根据加权成绩分别计算三人的个人成绩,进行比较.
【详解】
解:(l)甲、乙、丙的民主评议得分分别为:甲:200×25%=50 分,
乙:200×40%=80 分,丙:200×35%=70 分.
甲的平均成绩为(分),
乙的平均成绩为:(分),
丙的平均成绩(分).
由于1.67>1>2.67,所以候选人乙将被录用.
(2)如果将笔试、面试、民主评议三项测试得分按5 : 2 : 3的比例确定个人成绩,那么,甲的个人成绩为:(分)
乙的个人成绩为:(分).
丙的个人成绩为:(分)
由于丙的个人成绩最高,所以候选人丙将被录用.
本题考查加权平均数的概念及求法,要注意各部分的权重与相应的数据的关系,牢记加权平均数的计算公式是解题的关键.
题号
一
二
三
四
五
总分
得分
批阅人
2024-2025学年广东省广州市荔湾区九年级数学第一学期开学学业质量监测模拟试题【含答案】: 这是一份2024-2025学年广东省广州市荔湾区九年级数学第一学期开学学业质量监测模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年广东省广州白云广雅实验学校数学九上开学学业质量监测模拟试题【含答案】: 这是一份2024-2025学年广东省广州白云广雅实验学校数学九上开学学业质量监测模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
广东省梅州市梅江区实验中学2023-2024学年数学九年级第一学期期末学业质量监测模拟试题含答案: 这是一份广东省梅州市梅江区实验中学2023-2024学年数学九年级第一学期期末学业质量监测模拟试题含答案,共9页。试卷主要包含了答题时请按要求用笔, “泱泱华夏,浩浩千秋,如图下列条件中不能判定的是,下列事件中,必然事件是等内容,欢迎下载使用。