广东省梅州市梅江区实验中学2024年九上数学开学复习检测试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)某中学规定学生的学期体育成绩满分为100,其中大课间及体育课外活动占60%,期末考试成绩古40%.小云的两项成绩(百分制)依次为84,1.小云这学期的体育成绩是( )
A.86B.88C.90D.92
2、(4分)不等式2x﹣1<1的解集在数轴上表示正确的是( )
A.B.
C.D.
3、(4分)4的平方根是( )
A.4B.2C.-2D.±2
4、(4分)关于的不等式组的解集为,那么的取值范围为( )
A.B.C.D.
5、(4分)如图,直线与反比例函数的图象交于,两点.若点的坐标是,则点的坐标是( )
A.B.C.D.
6、(4分)如图,在中,,分别为,的中点,若,则的长为
A.3B.4C.5D.6
7、(4分)在一条笔直的航道上依次有甲、乙、丙三个港口,一艘船从甲出发,沿直线匀速行驶经过乙港驶向丙港,最终达到丙港,设行驶x (h)后,船与乙港的距离为y (km),y与x的关系如图所示,则下列说法正确的是( )
A.甲港与丙港的距离是90kmB.船在中途休息了0.5小时
C.船的行驶速度是45km/hD.从乙港到达丙港共花了1.5小时
8、(4分)在直线l上依次摆放着七个正方形(如图所示).已知斜放置的三个正方形的面积分别是1、2、3,正放置的四个正方形的面积依次是S1、S2、S3、S4,则S1+S2+S3+S4的值为( )
A.6B.5C.4D.3
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)妈妈做了一份美味可口的菜品,为了了解菜品的咸淡是否适合,于是妈妈取了一点品尝,这应该属于___________(填普查或抽样调查)
10、(4分)若关于x的二次方程(m+1)x2+5x+m2-3m=4的常数项为0,则m的值为______.
11、(4分)若关于x的方程-2=会产生增根,则k的值为________
12、(4分)甲、乙两人玩扑克牌游戏,游戏规则是:从牌面数字分别为5,6,7的三张扑克牌中,随机抽取一张,放回后,再随机抽取一张,若所抽取的两张牌牌面数字的积为奇数,则甲获胜;若所抽取的两张牌牌面数字的积为偶数,则乙获胜.这个游戏________.(填“公平”或“不公平”)
13、(4分)已知正方形的一条对角线长为cm,则该正方形的边长为__________cm.
三、解答题(本大题共5个小题,共48分)
14、(12分)在学校组织的“最美数学小报”的评比中,校团委给每个同学的作品打分,成绩分为四个等级,其中相应等级的得分依次记为100分,90分,80分,70分,将八(1)班与八(2)班的成绩整理并绘制成如下统计图:
请你根据以上提供的信息解答下列问题:
(1)将表格补充完整.
(2)若八(1)班有40人,且评分为B级及以上的同学有纪念奖章,请问该班共有几位同学得到奖章?
15、(8分)先阅读下面的村料,再分解因式.
要把多项式分解因式,可以先把它的前两项分成组,并提出a,把它的后两项分成组,并提出b,从而得
.
这时,由于中又有公困式,于是可提公因式,从而得到,因此有
.
这种因式分解的方法叫做分组分解法,如果把一个多项式各个项分组并提出公因式后,它们的另一个因式正好相同,那么这个多项式就可以利用分组分解法来因式分解.
请用上面材料中提供的方法因式分解:
请你完成分解因式下面的过程
______
;
.
16、(8分)如图,方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,的顶点均在格点上,点 坐标为.
(1)画出关于轴对称的;
(2)画出将绕原点逆时针旋转90°所得的;
(3)与能组成轴对称图形吗?若能,请你画出所有的对称轴.
17、(10分)为贯彻落实关于“传承和弘扬中华优秀传统文化”的重要讲话精神,2018年5月27日我市举办了第二届湖南省青少年国学大赛永州复赛.本次比赛全市共有近200所学校4.6万名学生参加.经各校推荐报名、县区初赛选拔、市区淘汰赛的层层选拔,推选出优秀的学生参加全省的总决赛.下面是某县初赛时选手成绩的统计图表(部分信息未给出).
请根据图表信息回答下列问题:
(1)在频数分布表中, , .
(2)请将频数直方图补充完整;
(3)若测试成绩不低于120分为优秀,则本次测试的优秀率是多少?
18、(10分)为引导学生广泛阅读古今文学名著,某校开展了读书活动.学生会随机调查了部分学生平均每周阅读时间的情况,整理并绘制了如下的统计图表:
学生平均每周阅读时间频数分布表
请根据以上信息,解答下列问题;
(1)在频数分布表中,a=______,b=______;
(2)补全频数分布直方图;
(3)如果该校有1600名学生,请你估计该校平均每周阅读时间不少于6小时的学生大约有多少人?
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)已知关于的方程的解是正数,则的取值范围是__________.
20、(4分)若方程的两根,则的值为__________.
21、(4分)若一次函数y=kx+b图象如图,当y>0时,x的取值范围是___________ .
22、(4分)在中, 若的面积为1,则四边形的面积为______.
23、(4分)已知A(﹣1,1),B(2,3),若要在x轴上找一点P,使AP+BP最短,此时点P的坐标为_____
二、解答题(本大题共3个小题,共30分)
24、(8分)在平行四边形ABCD中,点O是对角线BD中点,点E在边BC上,EO的延长线与边AD交于点F,连接BF、DE,如图1.
(1)求证:四边形BEDF是平行四边形;
(2)在(1)中,若DE=DC,∠CBD=45°,过点C作DE的垂线,与DE、BD、BF分别交于点G、H、R,如图2.
①当CD=6,CE=4时,求BE的长.
②探究BH与AF的数量关系,并给予证明.
25、(10分)某乳品公司向某地运输一批牛奶,若由铁路运输,每千克牛奶只需运费0.60元;若由公路运输,不仅每千克牛奶需运费0.30元,而且还需其他费用600元.设该公司运输这批牛奶为x千克,选择铁路运输时所需费用为y1元;选择公路运输时所需费用为y2元.
(1)请分别写出y1,y2与x之间的关系式;
(2)公司在什么情况下选择铁路运输比较合算?什么情况下选择公路运输比较合算?
26、(12分)如图,已知点E,C在线段BF上,BE=EC=CF,AB∥DE,∠ACB=∠F.
(1)求证:△ABC≌△DEF;
(2)求证:四边形ACFD为平行四边形.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、B
【解析】
根据加权平均数的计算公式,列出算式,再进行计算即可.
【详解】
解:小云这学期的体育成绩是(分),
故选:B.
此题考查了加权平均数,掌握加权平均数的计算公式是解题的关键,是一道基础题.
2、C
【解析】
不等式移项合并,把x系数化为1,求出解集,表示在数轴上即可.
【详解】
解:不等式移项合并得:2x<2,
解得:x<1,
表示在数轴上,如图所示:
故选C.
此题考查了解一元一次不等式,熟练掌握运算法则是解本题的关键.
3、D
【解析】
∵,
∴4的平方根是,
故选D.
4、A
【解析】
求出每个不等式的解集,找出不等式组的解集,根据已知即可得出x>a,求出即可.
【详解】
由①得:x>4,
由②得:x>a,
不等式组的解集是
∴
所以A选项是正确的.
本题主要考查对不等式的性质,解一元一次不等式,解一元一次不等式组等知识点的理解和掌握,根据不等式组的解集x>4得到x>a是解此题的关键.
5、A
【解析】
求出函数关系式,联立组成方程组求出方程组的解即可,也可以直接利用对称性直接得出点A的坐标.
【详解】
把点B(3,5)代入直线y=ax(a≠0)和反比例函数y=得:a=,k=15,
∴直线y=x,与反比例函数y=,
,解得:,
∴A(-3,-5)
故选:A.
考查一次函数和反比例函数的交点坐标的求法,常规求法是先求出各自的函数关系式,联立方程组求解即可,也可以直接根据函数图象的对称性得出答案.
6、D
【解析】
根据三角形的中位线定理得出AB=2DE,把DE的值代入即可.
【详解】
,分别为,的中点,
,
故选:.
本题考查了三角形的中位线平行于第三边并且等于第三边的一半,熟记定理是解题的关键.
7、D
【解析】
由船行驶的函数图象可以看出,船从甲港出发,0.5h后到达乙港,ah后到达丙港,进而解答即可.
【详解】
解:A、甲港与丙港的距离是30+90=120km,错误;
B、船在中途没有休息,错误;
C、船的行驶速度是,错误;
D、从乙港到达丙港共花了小时,正确;
故选D.
此题主要考查了函数图象与实际结合的问题,利用数形结合得出关键点坐标是解题关键,同学们应加强这方面的训练.
8、C
【解析】
由勾股定理的几何意义可知:S1+S2=1,S2+S3=2,S3+S4=3,S1+S2+S3+S4=4,故选A.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、抽样调查
【解析】
根据普查和抽样调查的定义,显然此题属于抽样调查.
【详解】
由于只是取了一点品尝,所以应该是抽样调查.
故答案为:抽样调查.
此题考查抽样调查和全面调查,解题关键在于掌握选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查;对于精确度要求高的调查,事关重大的调查往往选用普查.
10、1
【解析】
根据方程常数项为0,求出m的值即可.
【详解】
解:方程整理得:(m+1)x2+5x+m2-3m-1=0,
由常数项为0,得到m2-3m-1=0,即(m-1)(m+1)=0,
解得:m=1或m=-1,
当m=-1时,方程为5x=0,不合题意,舍去,
则m的值为1.
故答案为:1.
本题考查了一元二次方程的一般形式,以及一元二次方程的定义,将方程化为一般形式是解本题的关键.
11、
【解析】
根据方程有增根可得x=3,把-2=去分母后,再把x=3代入即可求出k的值.
【详解】
∵关于x的方程-2=会产生增根,
∴x-3=0,
∴x=3.
把-2=的两边都乘以x-3得,
x-2(x-3)=-k,
把x=3代入,得
3=-k,
∴k=-3.
故答案为:-3.
本题考查的是分式方程的增根,在分式方程变形的过程中,产生的不适合原方程的根叫做分式方程的增根.增根使最简公分母等于0,不适合原分式方程,但是适合去分母后的整式方程.
12、不公平.
【解析】
试题分析:先根据题意画出树状图,然后根据概率公式求解即可.
画出树状图如下:
共有9种情况,积为奇数有4种情况
所以,P(积为奇数)=
即甲获胜的概率是
所以这个游戏不公平.
考点:游戏公平性的判断
点评:解题的关键是熟练掌握概率的求法:概率=所求情况数与总情况数的比值.
13、
【解析】
根据正方形性质可知:正方形的一条角平分线即为对角线,对角线和正方形的两条相邻的边构成等腰直角三角形,根据勾股定理可得正方形的周长.
【详解】
解:∵正方形的对角线长为2,
设正方形的边长为x,
∴2x²=(2)²
解得:x=2
∴正方形的边长为:2
故答案为2.
本题考查了正方形的性质,解题的关键是明确正方形的对角线和正方形的两条相邻的边构成等腰直角三角形.
三、解答题(本大题共5个小题,共48分)
14、(1)①85.25;②80;③80(2)16
【解析】
(1)根据平均数、中位数和众数的计算方法分别计算得出;
(2)由统计图可知B级及以上的同学所占比例分别为17.5%和22.5%,用总人数40乘以B级及以上所占的百分比的和即可得出结果.
【详解】
(1)
①
②总计40个数据,从小到大排列得第20、21位数字都是80分,所以中位数为80
③众数即目标样本内相同数字最多的数,由扇形图可知C级所占比例最高,所以众数为80
(2)由统计图可知B级及以上的同学所占比例分别为17.5%和22.5%,计算可得:(人)
本题主要考查了条形统计图和扇形统计图的综合运用,以及中位数以及众数的定义,读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图能够清楚地表示各部分所占的百分比,难度不大.
15、 (1);(2) (m+x)(m-n);(3) (y-2)(x2y-4).
【解析】
如果把一个多项式各个项分组并提出公因式后,它们的另一个因式正好相同,那么这个多项式就可以利用分组分解法来因式分解.依此即可求解.
【详解】
(1)ab-ac+bc-b2
=a(b-c)-b(b-c)
=(a-b)(b-c);
故答案为(a-b)(b-c).
(2)m2-mn+mx-nx
=m(m-n)+x(m-n)
=(m+x)(m-n);
(3)x2y2-2x2y-4y+8
=x2y(y-2)-4(y-2)
=(y-2)(x2y-4).
考查了因式分解-提公因式法,因式分解-分组分解法,本题采用两两分组的方式.
16、(1)见解析;(2)见解析;(3)能,图见解析;
【解析】
(1)根据网格结构找出点A、B、C关于x轴的对称点A1、B1、C1的位置,然后顺次连接即可;
(2)根据网格结构找出点A、B、C绕原点O按逆时针旋转90°的对应点A2、B2、C2的位置,然后顺次连接即可;
(3)从图中可发现成轴对称图形,根据轴对称图形的性质画出对称轴即连接两对应点的线段,做它的垂直平分线.
【详解】
(1)如图所示:
(2)如图所示:
(3)成轴对称图形,根据轴对称图形的性质画出对称轴即连接两对应点的线段,作它的垂直平分线,如图,对称轴有2条.
此题考查利用旋转变换作图,利用轴对称变换作图,熟练掌握网格结构准确找出对应点的位置是解题的关键.
17、 (1)m=0.2,n=20;(2)图见解析;(3)50%.
【解析】
(1)根据成绩在105≤x<120的频数和频率可以求得本次调查的人数,从而可以求得m、n的值;
(2)根据(1)中n的值,可以将频数分布直方图补充完整;
(3)根据频数分布表中的数据可以得到本次测试的优秀率.
【详解】
解:(1)由表可知:105≤x<120的频数和频率分别为15、0.3,
∴本次调查的人数为:15÷0.3=50,
∴m=10÷50=0.2,
n=50×0.4=20,
故答案为:0.2,20;
(2)由(1)知,n=20,
补全完整的频数分布直方图如右图所示;
(3)成绩不低于120分为优秀,则本次测试的优秀率:(0.4+0.1)×100%=50%,
答:本次测试的优秀率是50%.
本题考查频数分布直方图、频数分布表,解答本题的关键是明确题意,利用数形结合的思想解答.
18、(1)80,0.1;(2)见详解;(3)1000人
【解析】
(1)求出总人数,总人数乘以0.2即可得到a,110除以总人数即可得到b.
(2)根据(1)中计算和表中信息画图.
(3)根据用样本估计总体的方法求解.
【详解】
解:(1)10÷0.025=400人;
a=400×0.2=80人,b==0.1;
故答案为80,0.1.
(2)如图:
(3)1600×(0.1+0.25+0.1)=1000人.
本题考查了频数分布直方图、频数分布表,两图结合是解题的关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、m>-6且m-4
【解析】
试题分析:分式方程去分母转化为整式方程,表示出x,根据x为正数列出关于m的不等式,求出不等式的解集即可确定出m的范围.
试题解析:分式方程去分母得:2x+m=3(x-2),
解得:x=m+6,
根据题意得:x=m+6>0,且m+6≠2,
解得:m>-6,且m≠-4.
考点: 分式方程的解.
20、1
【解析】
根据根与系数的关系求出,代入即可求解.
【详解】
∵是方程的两根
∴=-=4,==1
∴===4+1=1,
故答案为:1.
此题主要考查根与系数的关系,解题的关键是熟知=-,=的运用.
21、x<-1
【解析】
由图象可知一次函数y=kx+b的图象经过点(-1,0)、(0,-2).
∴ ,
解得 ,
∴该一次函数的解析式为y=−2x-2,
∵−2<0,
∴当y>0时,x的取值范围是:x<-1.
故答案为x<-1.
22、1
【解析】
S△AEF=1,按照同高时,面积与底成正比,逐次求解即可.
【详解】
S△AEF=1,DF=2AF,
∴S△DEF=2,
∵CE=2AE,
∴S△DEC=6,
∴S△ADC=9,
∵BD=2DC,
∴S△ABD=18,
∵DF=2AF,
∴S△BFD=12,
∴S四边形BDEF=12+2=1.
本题考查的是图象面积的计算,主要依据同高时,面积与底成正比,逐次求解即可.
23、
【解析】
点A(﹣1,1)关于x轴对称的点A'(﹣1,﹣1),求得直线A'B的解析式,令y=0可求点P的横坐标.
【详解】
解:点A(﹣1,1)关于x轴对称的点A'(﹣1,﹣1),
设直线A'B的解析式为y=kx+b,
把A'(﹣1,﹣1),B(2,3)代入,可得
,解得,
∴直线A'B的解析式为,
令y=0,则,
解得x=,
∴点P的坐标为(,0),
故答案为:(,0).
本题综合考查了待定系数法求一次函数解析式,一次函数图象上点的坐标特征,两点之间线段最短等知识点.凡是涉及最短距离的问题,一般要考虑线段的性质定理,多数情况要作点关于某直线的对称点.
二、解答题(本大题共3个小题,共30分)
24、(1)详见解析;(2)①4﹣2;②AF=BH,详见解析
【解析】
(1)由“ASA”可得△BOE≌△DOF,可得DF=BE,可得结论;
(2)①由等腰三角形的性质可得EN=CN=2,由勾股定理可求DN,由等腰三角形的性质可求BN的长,即可求解;
②如图,过点H作HM⊥BC于点M,由“AAS”可证△HMC≌△CND,可得HM=CN,由等腰直角三角形的性质可得BH=HM,即可得结论.
【详解】
(1)证明:∵平行四边形ABCD中,点O是对角线BD中点,
∴AD∥BC,BO=DO,
∴∠ADB=∠CBD,且∠DOF=∠BOE,BO=DO,
∴△BOE≌△DOF(ASA)
∴DF=BE,且DF∥BE,
∴四边形BEDF是平行四边形;
(2)①如图2,过点D作DN⊥EC于点N,
∵DE=DC=6,DN⊥EC,
∴EN=CN=2,
∴DN===4,
∵∠DBC=45°,DN⊥BC,
∴∠DBC=∠BDN=45°,
∴DN=BN=4,
∴BE=BN﹣EN=4﹣2;
故答案为:BE=4﹣2.
②AF=BH,
理由如下:如图,过点H作HM⊥BC于点M,
∵DN⊥EC,CG⊥DE,
∴∠CEG+∠ECG=90°,∠DEN+∠EDN=90°,
∴∠EDN=∠ECG,
∵DE=DC,DN⊥EC,
∴∠EDN=∠CDN,EC=2CN,
∴∠ECG=∠CDN,
∵∠DHC=∠DBC+∠BCH=45°+∠BCH,∠CDB=∠BDN+∠CDN=45°+∠CDN,
∴∠CDB=∠DHC,
∴CD=CH,且∠HMC=∠DNC=90°,∠ECG=∠CDN,
∴△HMC≌△CND(AAS)
∴HM=CN,
∵HM⊥BC,∠DBC=45°,
∴∠BHM=∠DBC=45°,
∴BM=HM,
∴BH=HM,
∵AD=BC,DF=BE,
∴AF=EC=2CN,
∴AF=2HM=BH.
故答案为:AF=BH.
本题是四边形综合题,考查了平行四边形的性质,全等三角形的判定和性质,勾股定理,等腰直角三角形的性质,添加恰当辅助线构造全等三角形是本题的关键.
25、(1)y1=0.6x, y2=0.3x+600;(2)当运输牛奶大于0kg小于2000kg时,选择铁路运输比较合算;当运输牛奶大于2000kg时,选择公路运输比较合算.
【解析】
(1)选择铁路运输时所需的费用y1=每千克运费0.6元×牛奶重量,选择公路运输时所需的费用y2=每千克运费0.3元×牛奶重量+600元;
(2)当选择铁路运输比较合算时y1<y2,进而可得不等式0.6x<0.3x+600,当选择公路运输比较合算时,0.6x>0.3x+600,分别解不等式即可.
【详解】
解:(1)由题意得:y1=0.6x, y2=0.3x+600;
(2)当选择铁路运输比较合算时,0.6x<0.3x+600,
解得:x<2000,
∵x>0,
∴0<x<2000,
当选择公路运输比较合算时,0.6x>0.3x+600,
解得:x>2000,
答:当运输牛奶大于0kg小于2000kg时,选择铁路运输比较合算;当运输牛奶大于2000kg时,选择公路运输比较合算.
此题主要考查了一次函数的应用,关键是正确理解题意,找出题目中的等量关系,列出函数关系式.
26、(1)证明见解析;(2)证明见解析.
【解析】
试题分析: (1)根据平行线得出∠B=∠DEF,求出BC=EF,根据ASA推出两三角形全等即可;(2)根据全等得出AC=DF,推出AC∥DF,得出平行四边形ACFD,推出AD∥CF,MAD=CF,推出AD=CE,AD∥CE,根据平行四边形的判定推出即可.
试题解析:
(1)证明:∵AB∥DE,
∴∠B=∠DEF,
∵BE=EC=CF,
∴BC=EF,
在△ABC和△DEF中
∴△ABC≌△DEF.
(2)证明:∵△ABC≌△DEF,
∴AC=DF,
∵∠ACB=∠F,
∴AC∥DF,
∴四边形ACFD是平行四边形,
∴AD∥CF,AD=CF,
∵EC=CF,
∴AD∥EC,AD=CE,
∴四边形AECD是平行四边形.
题号
一
二
三
四
五
总分
得分
平均数(分)
中位数(分)
众数(分)
八(1)班
83.75
80
八(2)班
80
平均每周阅读时间x(时)
频数
频率
0≤x<2
10
0.025
2≤x<4
60
0.150
4≤x<6
a
0.200
6≤x<8
110
b
8≤x<10
100
0.250
10≤x≤12
40
0.100
合计
400
1.000
平均数(分)
中位数(分)
众数(分)
八(1)班
83.75
80
③80
八(2)班
①85.25
②80
80
2023-2024学年广东省梅州市梅江区实验中学数学九上期末综合测试模拟试题含答案: 这是一份2023-2024学年广东省梅州市梅江区实验中学数学九上期末综合测试模拟试题含答案,共8页。试卷主要包含了考生要认真填写考场号和座位序号,下列事件中,是必然事件的是等内容,欢迎下载使用。
广东省梅州市梅江区实验中学2023-2024学年九年级数学第一学期期末质量跟踪监视试题含答案: 这是一份广东省梅州市梅江区实验中学2023-2024学年九年级数学第一学期期末质量跟踪监视试题含答案,共8页。试卷主要包含了下列四个数中,最小数的是等内容,欢迎下载使用。
广东省梅州市梅江区伯聪学校2023-2024学年数学九上期末检测试题含答案: 这是一份广东省梅州市梅江区伯聪学校2023-2024学年数学九上期末检测试题含答案,共8页。试卷主要包含了考生必须保证答题卡的整洁等内容,欢迎下载使用。