终身会员
搜索
    上传资料 赚现金
    [数学][期中]传陕西省西安市碑林区2023-2024学年高一上学期期中教育质量监测试题(解析版)
    立即下载
    加入资料篮
    [数学][期中]传陕西省西安市碑林区2023-2024学年高一上学期期中教育质量监测试题(解析版)01
    [数学][期中]传陕西省西安市碑林区2023-2024学年高一上学期期中教育质量监测试题(解析版)02
    [数学][期中]传陕西省西安市碑林区2023-2024学年高一上学期期中教育质量监测试题(解析版)03
    还剩10页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    [数学][期中]传陕西省西安市碑林区2023-2024学年高一上学期期中教育质量监测试题(解析版)

    展开
    这是一份[数学][期中]传陕西省西安市碑林区2023-2024学年高一上学期期中教育质量监测试题(解析版),共13页。试卷主要包含了单项选择题,多项选择题,填空题,解答题等内容,欢迎下载使用。

    一、单项选择题(每小题4分,共8小题,总计32分.)
    1. 设集合为小于10的素数,集合,则( )
    A. B. C. D.
    【答案】A
    【解析】由题意得,因为,所以.
    故选:A.
    2. 已知,则“”是“”的( )
    A. 充分不必要条件B. 必要不充分条件
    C. 充要条件D. 既不充分也不必要条件
    【答案】D
    【解析】当,时,满足,此时;
    当,时,满足,此时;
    ,,“”是“”的既不充分也不必要条件.
    故选:D.
    3. 命题“,一元二次方程有实根”的否定是( )
    A. ,一元二次方程无实根
    B. ,一元二次方程无实根
    C. ,
    D. ,
    【答案】B
    【解析】命题“,一元二次方程有实根”为全称量词命题,
    其否定为:,一元二次方程无实根.
    故选:B.
    4. 下列命题为真命题的是( )
    A. 若,则B. 若,则
    C. 若,则D. 若,则
    【答案】B
    【解析】A:若时,不成立,假命题;
    B:由不等式性质知,则,真命题;
    C:若,则,假命题;
    D:若,则,假命题.
    故选:B.
    5. 下列函数中,与函数是同一函数的是( )
    A. B.
    C. D.
    【答案】C
    【解析】函数,定义域为,
    选项A中,定义域为,故A错误;
    选项B中,定义域为,故B错误;
    选项中,定义域为,故正确;
    选项D中,定义域为,故D错误.
    故选:C.
    6. 已知函数的定义域为R,则实数的取值范围是( )
    A. B.
    C. D.
    【答案】A
    【解析】由题意得对任意恒成立,
    当时,不等式可化为,其解集不是R,不符合题意;
    当时,由该不等式恒成立可得,解之得,
    综上,实数的取值范围是.
    故选:A.
    7. 一家商店使用一架两臂不等长的天平称黄金,一顾客到店购买黄金,售货员先将砝码放在天平左盘中,取出黄金放在右盘中使天平平衡;再将砝码放在天平右盘中,再取出黄金放在左盘中使天平平衡;最后将两次称得的黄金交给顾客.你认为顾客购得的黄金( )
    A. 小于B. 等于
    C. 大于D. 与左右臂的长度有关
    【答案】C
    【解析】设天平左、右两边的臂长分别为x,y,
    设售货员第一次称得黄金的质量为a克,第二次称得黄金的质量为b克,
    则,解之得,
    则顾客购得的黄金为(克),
    (当且仅当时等号成立),
    由题意知,,则克.
    故选:C.
    8. 定义,设函数,;记函数,且函数在区间的值域为,则区间长度的最大值( )
    A. 1B. C. D. 2
    【答案】D
    【解析】令,即,解得,
    所以,
    则的图象如下所示:
    又,,
    要使函数在区间的值域为,当时,
    当时,
    所以当,时区间长度的取得最大值,且最大值为.
    故选:D.
    二、多项选择题(每小题4分,共4小题,总计16分,全部答对得4分,部分答对得2分,错选得0分.)
    9. 下列说法正确的是( )
    A.
    B. 集合
    C. 函数的值域为
    D. 在定义域内单调递增
    【答案】BD
    【解析】对于A:或,故A错误;
    对于B:,
    又,令,所以,,
    即,
    所以,故B正确;
    对于C:因为,所以的值域为,故C错误;
    对于D:,
    因为在上单调递增,在上单调递增,
    且为连续函数,所以在上单调递增,故D正确.
    故选:BD.
    10. 使“”成立的一个必要不充分条件可以是( )
    A. B. 或
    C. D.
    【答案】AC
    【解析】因为,,
    所以由推得出,由推不出,
    即是的充分不必要条件,则是的必要不充分条件;
    同理可得是的必要不充分条件;
    所以使“”成立的一个必要不充分条件可以是,.
    故选:AC.
    11. 已知关于的不等式的解集为或,则以下选项正确的有( )
    A.
    B. 不等式的解集为
    C.
    D. 不等式的解集为或
    【答案】ABD
    【解析】关于的不等式的解集为或,
    则和是方程的二根,且,
    则,解之得,
    由,可得选项A判断正确;
    选项B:不等式可化为,
    解之得,则不等式解集,判断正确;
    选项C:,判断错误;
    选项D:不等式可化为,
    即,解之得或,
    则不等式的解集为或,判断正确.
    故选:ABD.
    12. 若函数在定义域内的某区间M是增函数,且在M上是减函数,则称在M上是“弱增函数”,则下列说法正确的是( )
    A. 若,则不存在区间M使为“弱增函数”
    B. 若,则存在区间M使为“弱增函数”
    C. 若,则为R上的“弱增函数”
    D. 若在区间上是“弱增函数”,则
    【答案】ABD
    【解析】对于A:在上为增函数,在定义域内的任何区间上都是增函数,故不存在区间M使为“弱增函数”,A正确;
    对于B:由对勾函数的性质可知:在上为增函数,,
    由幂函数的性质可知,在上为减函数,
    故存在区间使为“弱增函数”,B正确;
    对于C:为奇函数,且时,为增函数,
    由奇函数的对称性可知为R上的增函数,为偶函数,
    其在时为增函数,在时为减函数,故不是R上的“弱增函数”,
    C错误;
    对于D:若在区间上是“弱增函数”,
    则在上为增函数,所以,解得,
    又在上为减函数,由对勾函数的单调性可知,,
    则,综上.故D正确.
    故选:ABD.
    三、填空题(每小题4分,共4小题,总计16分.)
    13. 写出一个同时具有下列性质的函数:____.
    ①是偶函数; ②在上单调递增.
    【答案】(答案不唯一)
    【解析】由是偶函数可得的图像关于y轴对称,
    则的图像关于直线对称,又在上单调递增,
    则,或,或(答案不唯一).
    故答案为:(答案不唯一).
    14. 已知函数,则______.
    【答案】
    【解析】因为,所以,
    则.
    故答案为:.
    15. 若,且,则的最小值为______.
    【答案】6
    【解析】因为,所以,即,
    所以,则有,
    解得(舍),或,
    当且仅当时取得等号,
    所以的最小值为6.
    故答案为:6.
    16. 已知函数是定义在上的偶函数,则______.
    【答案】
    【解析】因为函数是定义在上的偶函数,
    所以且,
    即且,
    所以且,
    则.
    故答案为:.
    四、解答题(共6大题,共56分.)
    17. 已知幂函数的图象关于轴对称.
    (1)求函数的解析式;
    (2)若函数在区间上单调,求实数的取值范围.
    解:(1)是幂函数,
    ,解得或,
    则或,
    又的图象关于轴对称,即为偶函数,所以.
    (2)由(1)可知,,对称轴为,
    函数在区间上单调,
    令或,解得或,即.
    18. 已知集合,.
    (1)若,求;
    (2)若,求实数的取值范围.
    解:(1)当时不等式,即,
    即,解得,所以,
    由,即,解得,
    所以,.
    (2)集合,,
    分三种情况讨论:
    ①当时,,由,则,解得,
    ②当时,,满足,
    ③当时,,由,则,解得,
    综上,实数的取值范围是.
    19. 设,均为正实数.
    (1)求证:
    (2)若,证明:.
    解:(1),,,,
    要证,即证,

    ,即,当且仅当时等号成立.
    (2)因为,,且,
    所以,且,则,,
    由(1)得,

    当且仅当,即时等号成立.
    20. 已知函数是定义在上的奇函数,且.
    (1)求函数的解析式;
    (2)用定义证明:函数在上单调递增.
    解:(1)函数是定义在上的奇函数,,
    ,而,解得,
    ,则的定义域为且,
    即为奇函数,符合题意.
    (2)函数在上单调递增,证明如下:
    任意且,
    则,
    因为,所以,又因为,所以,
    所以,即,
    所以函数在上为增函数.
    21. 某地区上年度电价为0.8元,年用电量为,本年度计划将电价下降到0.55元至0.75元之间,而用户期望的电价为0.4元.经测算,下调电价后新增用电量和实际电价与用户的期望电价的差成反比(比例系数为k).该地区的电力成本价为0.3元.
    (1)写出本年度电价下调后电力部门的收益y(单位:元)关于实际电价x(单位:元)的函数解析式.(收益=实际电量×(实际电价-成本价))
    (2)设,当电价最低定为多少时,仍可保证电力部门的收益比上年至少增长20%?
    解:(1)设下调后的电价为x元,依题意知用电量增至,
    电力部门的收益为.
    (2)依题意有,
    整理得,
    解此不等式组得.
    答:当电价最低定为0.6元仍可保证电力部门的收益比上年至少增长20%.
    22. 我们知道,函数的图象关于坐标原点成中心对称图形的充要条件是函数为奇函数,有同学发现可以将其推广为:函数的图象关于点成中心对称图形的充要条件是函数为奇函数.若函数的图象关于点对称,且当时,.
    (1)求的值;
    (2)设函数.
    (i)证明函数的图象关于点对称;
    (ii)若对任意,总存在,使得成立,求的取值范围.
    解:(1)∵为奇函数,
    ∴,得,
    则令,得.
    (2)(i),
    ∵为奇函数,∴为奇函数,
    ∴函数的图象关于点对称.
    (ii)在区间上单调递增,∴在区间上的值域为,
    记在区间上的值域为,
    由对,总,使得成立知,
    ①当时,在上单调递增,由对称性知,在上单调递增,
    ∴在上单调递增,
    只需即可,得,∴满足题意;
    ②当时,在上单调递减,在上单调递增,由对称性知,
    在上单调递增,在上单调递减,
    ∴在上单调递减,在上单调递增,在上单调递减,
    ∴或,
    当时,,,
    ∴满足题意;
    ③当时,在上单调递减,由对称性知,在上单调递减,
    ∴在上单调递减,
    只需即可,得,∴满足题意.
    综上所述,的取值范围为.
    相关试卷

    2023-2024学年陕西省西安市阎良区高二上学期期中数学模拟试题(含解析): 这是一份2023-2024学年陕西省西安市阎良区高二上学期期中数学模拟试题(含解析),共13页。试卷主要包含了单选题,多选题,填空题,解答题等内容,欢迎下载使用。

    陕西省西安中学2023-2024学年高一上学期期中数学试题(Word版附解析): 这是一份陕西省西安中学2023-2024学年高一上学期期中数学试题(Word版附解析),共13页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    陕西省西安市鄠邑区2023-2024学年高一上学期期中质量检测数学试题: 这是一份陕西省西安市鄠邑区2023-2024学年高一上学期期中质量检测数学试题,共38页。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map