![新高考数学一轮复习学案第9章第2讲 两直线的位置关系(含解析)01](http://img-preview.51jiaoxi.com/3/3/16096577/0-1724500908288/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![新高考数学一轮复习学案第9章第2讲 两直线的位置关系(含解析)02](http://img-preview.51jiaoxi.com/3/3/16096577/0-1724500908339/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![新高考数学一轮复习学案第9章第2讲 两直线的位置关系(含解析)03](http://img-preview.51jiaoxi.com/3/3/16096577/0-1724500908365/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
新高考数学一轮复习学案第9章第2讲 两直线的位置关系(含解析)
展开一、知识梳理
1.两直线的平行、垂直与其斜率的关系
2.两条直线的交点
3.三种距离
常用结论
1.会用两个充要条件
(1)两直线平行或重合的充要条件
直线l1:A1x+B1y+C1=0与直线l2:A2x+B2y+C2=0平行或重合的充要条件是A1B2-A2B1=0.
(2)两直线垂直的充要条件
直线l1:A1x+B1y+C1=0与直线l2:A2x+B2y+C2=0垂直的充要条件是A1A2+B1B2=0.
2.直线系方程
(1)与直线Ax+By+C=0平行的直线系方程是Ax+By+m=0(m∈R且m≠C).
(2)与直线Ax+By+C=0垂直的直线系方程是Bx-Ay+n=0(n∈R).
(3)过直线l1:A1x+B1y+C1=0与l2:A2x+B2y+C2=0的交点的直线系方程为A1x+B1y+C1+λ(A2x+B2y+C2)=0(λ∈R),但不包括l2.
3.六种常用对称关系
(1)点(x,y)关于原点(0,0)的对称点为(-x,-y).
(2)点(x,y)关于x轴的对称点为(x,-y),关于y轴的对称点为(-x,y).
(3)点(x,y)关于直线y=x的对称点为(y,x),关于直线y=-x的对称点为(-y,-x).
(4)点(x,y)关于直线x=a的对称点为(2a-x,y),关于直线y=b的对称点为(x,2b-y).
(5)点(x,y)关于点(a,b)的对称点为(2a-x,2b-y).
(6)点(x,y)关于直线x+y=k的对称点为(k-y,k-x),关于直线x-y=k的对称点为(k+y,x-k).
二、教材衍化
1.两直线4x+3y=10与2x-y=10的交点坐标为________.
答案:(4,-2)
2.已知点(a,2)(a>0)到直线l:x-y+3=0的距离为1,则a等于________
答案:eq \r(2)-1
3.已知直线l1:ax+3y+1=0,l2:2x+(a+1)y+1=0互相平行,则实数a的值是________.
解析:由直线l1与l2平行,可得eq \b\lc\{(\a\vs4\al\c1(a(a+1)=2×3,,a×1≠2,))解得a=-3.
答案:-3
一、思考辨析
判断正误(正确的打“√”,错误的打“×”)
(1)当直线l1和l2的斜率都存在时,一定有k1=k2⇒l1∥l2.( )
(2)如果两条直线l1与l2垂直,则它们的斜率之积一定等于-1.( )
(3)若两直线的方程组成的方程组有唯一解,则两直线相交.( )
(4)已知直线l1:A1x+B1y+C1=0,l2:A2x+B2y+C2=0(A1,B1,C1,A2,B2,C2为常数),若直线l1⊥l2,则A1A2+B1B2=0.( )
(5)直线外一点与直线上一点的距离的最小值就是点到直线的距离.( )
答案:(1)× (2)× (3)√ (4)√ (5)√
二、易错纠偏
eq \a\vs4\al(常见误区)eq \b\lc\|(\a\vs4\al\c1( ))(1)求平行线间距离忽视x,y的系数相同;
(2)判断两条直线的位置关系忽视斜率不存在的情况.
1.两条平行直线3x+4y-12=0与6x+8y+11=0之间的距离为( )
A.eq \f(23,5) B.eq \f(23,10)
C.7 D.eq \f(7,2)
解析:选D.直线3x+4y-12=0可化为6x+8y-24=0,所以两平行直线之间的距离为eq \f(|11+24|,\r(36+64))=eq \f(7,2).
2.已知直线l1:ax+y-4=0和l2:2x+ay+1=0若l1⊥l2,则a=________.
解析:因为l1⊥l2,则2a+a=0,所以a=0.
答案:0
考点一 两直线的位置关系(基础型)
eq \a\vs4\al(复习指导)eq \b\lc\|(\a\vs4\al\c1( ))能根据斜率判定两条直线平行或垂直.
核心素养 数学运算,逻辑推理
(一题多解)已知直线l1:ax+2y+6=0和直线l2:x+(a-1)y+a2-1=0.
(1)当l1∥l2时,求a的值;
(2)当l1⊥l2时,求a的值.
【解】 (1)法一:当a=1时,l1:x+2y+6=0,
l2:x=0,l1不平行于l2;
当a=0时,l1:y=-3,l2:x-y-1=0,l1不平行于l2;
当a≠1且a≠0时,
两直线方程可化为l1:y=-eq \f(a,2)x-3,l2:y=eq \f(1,1-a)x-(a+1),由l1∥l2可得eq \b\lc\{(\a\vs4\al\c1(-\f(a,2)=\f(1,1-a),,-3≠-(a+1),))解得a=-1.
综上可知,a=-1.
法二:由l1∥l2知eq \b\lc\{(\a\vs4\al\c1(A1B2-A2B1=0,,A1C2-A2C1≠0,))
即eq \b\lc\{(\a\vs4\al\c1(a(a-1)-1×2=0,,a(a2-1)-1×6≠0))⇒eq \b\lc\{(\a\vs4\al\c1(a2-a-2=0,,a(a2-1)≠6))⇒a=-1.
(2)法一:当a=1时,l1:x+2y+6=0,l2:x=0,l1与l2不垂直,故a=1不符合;
当a≠1时,l1:y=-eq \f(a,2)x-3,l2:y=eq \f(1,1-a)x-(a+1),
由l1⊥l2,得eq \b\lc\(\rc\)(\a\vs4\al\c1(-\f(a,2)))·eq \f(1,1-a)=-1⇒a=eq \f(2,3).
法二:因为l1⊥l2,所以A1A2+B1B2=0,
即a+2(a-1)=0,得a=eq \f(2,3).
eq \a\vs4\al()
(1)两直线平行、垂直的判断方法
若已知两直线的斜率存在.
①两直线平行⇔两直线的斜率相等且在坐标轴上的截距不等.
②两直线垂直⇔两直线的斜率之积等于-1.
[提醒] 判断两条直线位置关系应注意:
〈1〉注意斜率不存在的特殊情况.
〈2〉注意x,y的系数不能同时为零这一隐含条件.
(2)由两条直线平行与垂直求参数的值的解题策略
在解这类问题时,一定要“前思后想”.“前思”就是在解题前考虑斜率不存在的可能性,是否需要分情况讨论;“后想”就是在解题后,检验答案的正确性,看是否出现增解或漏解.
1.(2020·天津静海区联考)“a=1”是“直线ax+2y-8=0与直线x+(a+1)y+4=0平行”的( )
A.充要条件
B.充分不必要条件
C.必要不充分条件
D.既不充分也不必要条件
解析:选A.设直线l1:ax+2y-8=0,直线l2:x+(a+1)y+4=0.若l1与l2平行,则a(a+1)-2=0,即a2+a-2=0,解得a=1或a=-2.当a=-2时,直线l1的方程为-2x+2y-8=0,即x-y+4=0,直线l2的方程为x-y+4=0,此时两直线重合,则a≠-2.当a=1时,直线l1的方程为x+2y-8=0,直线l2的方程为x+2y+4=0,此时两直线平行.故“a=1”是“直线ax+2y-8=0与直线x+(a+1)y+4=0平行”的充要条件.故选A.
2.求满足下列条件的直线方程.
(1)过点P(-1,3)且平行于直线x-2y+3=0;
(2)已知A(1,2),B(3,1),线段AB的垂直平分线.
解:(1)设直线方程为x-2y+c=0,把P(-1,3)代入直线方程得c=7,
所以直线方程为x-2y+7=0.
(2)AB中点为eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1+3,2),\f(2+1,2))),即eq \b\lc\(\rc\)(\a\vs4\al\c1(2,\f(3,2))),
直线AB斜率kAB=eq \f(2-1,1-3)=-eq \f(1,2),
故线段AB垂直平分线斜率k=2,
所以其方程为y-eq \f(3,2)=2(x-2),即4x-2y-5=0.
考点二 两直线的交点与距离问题(基础型)
eq \a\vs4\al(复习指导)eq \b\lc\|(\a\vs4\al\c1( ))1.能用解方程组的方法求两条相交直线的交点坐标.
2.探索并掌握两点间的距离公式、点到直线的距离公式,会求两平行直线间的距离.
核心素养:数学运算
角度一 两直线的交点与直线过定点
(1)对于任给的实数m,直线(m-1)x+(2m-1)y=m-5都通过一定点,则该定点的坐标为( )
A.(9,-4) B.(-9,-4)
C.(9,4) D.(-9,4)
(2)经过两直线l1:x-2y+4=0和l2:x+y-2=0的交点P,且与直线l3:3x-4y+5=0垂直的直线l的方程为________.
【解析】 (1)(m-1)x+(2m-1)y=m-5即为m(x+2y-1)+(-x-y+5)=0,故此直线过直线x+2y-1=0和-x-y+5=0的交点.由eq \b\lc\{(\a\vs4\al\c1(x+2y-1=0,,-x-y+5=0))得定点的坐标为(9,-4).故选A.
(2)由方程组eq \b\lc\{(\a\vs4\al\c1(x-2y+4=0,,x+y-2=0,))得eq \b\lc\{(\a\vs4\al\c1(x=0,,y=2,))即P(0,2).因为l⊥l3,所以直线l的斜率k=-eq \f(4,3),所以直线l的方程为y-2=-eq \f(4,3)x,即4x+3y-6=0.
【答案】 (1)A (2)4x+3y-6=0
角度二 三种距离问题
(1)已知点P(-1,-1),A(1,0),B(0,1),则△ABP的面积为________.
(2)若两平行直线l1:x-2y+m=0(m>0)与l2:2x+ny-6=0之间的距离是eq \r(5),则m+n=________.
【解析】 (1)因为A(1,0),B(0,1),所以|AB|=eq \r(2),直线AB的方程为x+y-1=0,则点P(-1,-1)到直线AB的距离d=eq \f(3,\r(2)),所以△ABP的面积为eq \f(1,2)×eq \r(2)×eq \f(3,\r(2))=eq \f(3,2).
(2)因为l1,l2平行,所以1×n=2×(-2),1×(-6)≠2×m,解得n=-4,m≠-3,所以直线l2:x-2y-3=0.又l1,l2之间的距离是eq \r(5),所以eq \f(|m+3|,\r(1+4))=eq \r(5),得m=2或m=-8(舍去),所以m+n=-2.
【答案】 (1)eq \f(3,2) (2)-2
eq \a\vs4\al()
两种距离的求解思路
(1)点到直线的距离的求法
可直接利用点到直线的距离公式来求,但要注意此时直线方程必须为一般式.
(2)两平行直线间的距离的求法
①利用“转化法”将两条平行线间的距离转化为一条直线上任意一点到另一条直线的距离;
②利用两平行线间的距离公式(利用公式前需把两平行线方程中x,y的系数化为相同的形式).
1.与直线l1:3x+2y-6=0和直线l2:6x+4y-3=0等距离的直线方程是________.
解析:l2:6x+4y-3=0化为3x+2y-eq \f(3,2)=0,
所以l1与l2平行,设与l1,l2等距离的直线l的方程为3x+2y+c=0,
则|c+6|=|c+eq \f(3,2)|,
解得c=-eq \f(15,4),
所以l的方程为12x+8y-15=0.
答案:12x+8y-15=0
2.l1,l2是分别经过A(1,1),B(0,-1)两点的两条平行直线,当l1,l2间的距离最大时,直线l1的方程是________.
解析:当两条平行直线与A,B两点连线垂直时,两条平行直线间的距离最大.又kAB=eq \f(-1-1,0-1)=2,所以两条平行直线的斜率为k=-eq \f(1,2),所以直线l1的方程是y-1=-eq \f(1,2)(x-1),即x+2y-3=0.
答案:x+2y-3=0
考点三 对称问题(综合型)
eq \a\vs4\al(复习指导)eq \b\lc\|(\a\vs4\al\c1( ))对称问题的核心是点关于直线的对称问题,要把握两点,点M与点N关于直线l对称,则线段MN的中点在直线l上,且直线l与直线MN垂直.
已知直线l:2x-3y+1=0,点A(-1,-2).求:
(1)点A关于直线l的对称点A′的坐标;
(2)直线m:3x-2y-6=0关于直线l的对称直线m′的方程.
【解】 (1)设A′(x,y),由已知得eq \b\lc\{(\a\vs4\al\c1(\f(y+2,x+1)×\f(2,3)=-1,,2×\f(x-1,2)-3×\f(y-2,2)+1=0,))
解得eq \b\lc\{(\a\vs4\al\c1(x=-\f(33,13),,y=\f(4,13).))所以A′eq \b\lc\(\rc\)(\a\vs4\al\c1(-\f(33,13),\f(4,13))).
(2)在直线m上取一点,如M(2,0),
则M(2,0)关于直线l的对称点M′必在直线m′上.
设M′(a,b),则eq \b\lc\{(\a\vs4\al\c1(2×\f(a+2,2)-3×\f(b+0,2)+1=0,,\f(b-0,a-2)×\f(2,3)=-1.))
解得M′eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(6,13),\f(30,13))).
设直线m与直线l的交点为N,
则由eq \b\lc\{(\a\vs4\al\c1(2x-3y+1=0,,3x-2y-6=0.))得N(4,3).
又因为m′经过点N(4,3),
所以由两点式得直线m′的方程为9x-46y+102=0.
【迁移探究】 (变问法)在本例条件下,求直线l关于点A(-1,-2) 对称的直线l′的方程.
解:设P(x,y)为l′上任意一点,则P(x,y)关于点A(-1,-2)的对称点为P′(-2-x,-4-y),
因为P′在直线l上,
所以2(-2-x)-3(-4-y)+1=0,
即2x-3y-9=0.
eq \a\vs4\al()
1.与直线3x-4y+5=0关于x轴对称的直线方程为________.
解析:设A(x,y)为所求直线上的任意一点,
则A′(x,-y)在直线3x-4y+5=0上,即3x-4(-y)+5=0,故所求直线方程为3x+4y+5=0.
答案:3x+4y+5=0
2.已知点A(1,3)关于直线y=kx+b对称的点是B(-2,1),则直线y=kx+b在x轴上的截距是________.
解析:由题意得线段AB的中点eq \b\lc\(\rc\)(\a\vs4\al\c1(-\f(1,2),2))在直线y=kx+b上,故eq \b\lc\{(\a\vs4\al\c1(\f(2,3)·k=-1,,-\f(1,2)k+b=2,))解得k=-eq \f(3,2),b=eq \f(5,4),所以直线方程为y=-eq \f(3,2)x+eq \f(5,4).令y=0,即-eq \f(3,2)x+eq \f(5,4)=0,解得x=eq \f(5,6),故直线y=kx+b在x轴上的截距为eq \f(5,6).
答案:eq \f(5,6)
[基础题组练]
1.已知直线ax+2y+2=0与3x-y-2=0平行,则系数a=( )
A.-3 B.-6
C.-eq \f(3,2) D.eq \f(2,3)
解析:选B.由直线ax+2y+2=0与直线3x-y-2=0平行知,-eq \f(a,2)=3,a=-6.
2.已知直线4x+my-6=0与直线5x-2y+n=0垂直,垂足为(t,1),则n的值为( )
A.7 B.9
C.11 D.-7
解析:选A.由直线4x+my-6=0与直线5x-2y+n=0垂直得,20-2m=0,m=10.直线4x+10y-6=0过点(t,1),所以4t+10-6=0,t=-1.点(-1,1)又在直线5x-2y+n=0上,所以-5-2+n=0,n=7.
3.若点P在直线3x+y-5=0上,且P到直线x-y-1=0的距离为eq \r(2),则点P的坐标为( )
A.(1,2) B.(2,1)
C.(1,2)或(2,-1) D.(2,1)或(-1,2)
解析:选C.设P(x,5-3x),则d=eq \f(|x-(5-3x)-1|,\r(12+(-1)2))=eq \r(2),化简得|4x-6|=2,
即4x-6=±2,解得x=1或x=2,
故P(1,2)或(2,-1).
4.直线ax+y+3a-1=0恒过定点M,则直线2x+3y-6=0关于M点对称的直线方程为( )
A.2x+3y-12=0 B.2x-3y-12=0
C.2x-3y+12=0 D.2x+3y+12=0
解析:选D.由ax+y+3a-1=0,可得a(x+3)+(y-1)=0,令eq \b\lc\{(\a\vs4\al\c1(x+3=0,,y-1=0,))可得x=-3,y=1,所以M(-3,1),M不在直线2x+3y-6=0上,设直线2x+3y-6=0关于M点对称的直线方程为2x+3y+c=0(c≠-6),则eq \f(|-6+3-6|,\r(4+9))=eq \f(|-6+3+c|,\r(4+9)),解得c=12或c=-6(舍去),所以所求方程为2x+3y+12=0,故选D.
5.直线2x-y+3=0关于直线x-y+2=0对称的直线方程是( )
A.x-2y+3=0 B.x-2y-3=0
C.x+2y+1=0 D.x+2y-1=0
解析:选A.设所求直线上任意一点P(x,y),则P关于x-y+2=0的对称点为P′(x0,y0),
由eq \b\lc\{(\a\vs4\al\c1(\f(x+x0,2)-\f(y+y0,2)+2=0,,x-x0=-(y-y0)))得eq \b\lc\{(\a\vs4\al\c1(x0=y-2,,y0=x+2,))
由点P′(x0,y0)在直线2x-y+3=0上,
所以2(y-2)-(x+2)+3=0,即x-2y+3=0.
6.过两直线l1:x-3y+4=0和l2:2x+y+5=0的交点和原点的直线方程为________.
解析:过两直线交点的直线系方程为x-3y+4+λ(2x+y+5)=0,代入原点坐标,求得λ=-eq \f(4,5),故所求直线方程为x-3y+4-eq \f(4,5)(2x+y+5)=0,即3x+19y=0.
答案:3x+19y=0
7.已知直线l1:ax+y+3a-4=0和l2:2x+(a-1)y+a=0,则原点到l1的距离的最大值是________;若l1∥l2,则a=________.
解析:直线l1:ax+y+3a-4=0等价于a(x+3)+y-4=0,则直线过定点A(-3,4),当原点到l1的距离最大时,满足OA⊥l1,此时原点到l1的距离的最大值为|OA|=eq \r((-3)2+42)=5.
若a=0,则两直线方程为y-4=0和2x-y=0,不满足直线平行;
若a=1,则两直线方程为x+y-1=0和2x+1=0,不满足直线平行;
当a≠0且a≠1时,若两直线平行,则eq \f(a,2)=eq \f(1,a-1)≠eq \f(3a-4,a),
由eq \f(a,2)=eq \f(1,a-1)得a2-a-2=0,解得a=2或a=-1.
当a=2时,eq \f(a,2)=eq \f(3a-4,a),舍去,
当a=-1时,eq \f(a,2)≠eq \f(3a-4,a),成立,即a=-1.
答案:5 -1
8.已知点A(-1,2),B(3,4).P是x轴上一点,且|PA|=|PB|,则△PAB的面积为________.
解析:设AB的中点坐标为M(1,3),
kAB=eq \f(4-2,3-(-1))=eq \f(1,2),
所以AB的中垂线方程为y-3=-2(x-1).
即2x+y-5=0.令y=0,则x=eq \f(5,2),
即P点的坐标为(eq \f(5,2),0),
|AB|=eq \r((-1-3)2+(2-4)2)=2eq \r(5).
点P到AB的距离为|PM|=eq \r(\b\lc\(\rc\)(\a\vs4\al\c1(1-\f(5,2)))\s\up12(2)+32)=eq \f(3\r(5),2).
所以S△PAB=eq \f(1,2)|AB|·|PM|=eq \f(1,2)×2eq \r(5)×eq \f(3\r(5),2)=eq \f(15,2).
答案:eq \f(15,2)
9.已知两直线l1:ax-by+4=0和l2:(a-1)x+y+b=0,求满足下列条件的a,b的值.
(1)l1⊥l2,且直线l1过点(-3,-1);
(2)l1∥l2,且坐标原点到这两条直线的距离相等.
解:(1)因为l1⊥l2,
所以a(a-1)-b=0.
又因为直线l1过点(-3,-1),
所以-3a+b+4=0.
故a=2,b=2.
(2)因为直线l2的斜率存在,l1∥l2,
所以直线l1的斜率存在.
所以eq \f(a,b)=1-a.①
又因为坐标原点到这两条直线的距离相等,
所以l1,l2在y轴上的截距互为相反数,即eq \f(4,b)=b.②
联立①②可得a=2,b=-2或a=eq \f(2,3),b=2.
10.已知△ABC的顶点A(5,1),AB边上的中线CM所在直线方程为2x-y-5=0,AC边上的高BH所在直线方程为x-2y-5=0,求直线BC的方程.
解:依题意知:kAC=-2,A(5,1),
所以lAC的方程为2x+y-11=0,
联立eq \b\lc\{(\a\vs4\al\c1(2x+y-11=0,,2x-y-5=0,))得C(4,3).
设B(x0,y0),则AB的中点Meq \b\lc\(\rc\)(\a\vs4\al\c1(\f(x0+5,2),\f(y0+1,2))),
代入2x-y-5=0,得2x0-y0-1=0,
联立eq \b\lc\{(\a\vs4\al\c1(2x0-y0-1=0,,x0-2y0-5=0,))得B(-1,-3),
所以kBC=eq \f(6,5),所以直线BC的方程为y-3=eq \f(6,5)(x-4),即6x-5y-9=0.
[综合题组练]
1.已知直线y=2x是△ABC中∠C的平分线所在的直线,若点A,B的坐标分别是(-4,2),(3,1),则点C的坐标为( )
A.(-2,4) B.(-2,-4)
C.(2,4) D.(2,-4)
解析:选C.设A(-4,2)关于直线y=2x的对称点为(x,y),则eq \b\lc\{(\a\vs4\al\c1(\f(y-2,x+4)×2=-1,,\f(y+2,2)=2×\f(-4+x,2),))解得eq \b\lc\{(\a\vs4\al\c1(x=4,,y=-2,))所以BC所在直线方程为y-1=eq \f(-2-1,4-3)(x-3),即3x+y-10=0.同理可得点B(3,1)关于直线y=2x的对称点为(-1,3),所以AC所在直线方程为y-2=eq \f(3-2,-1-(-4))·(x+4),即x-3y+10=0.联立得eq \b\lc\{(\a\vs4\al\c1(3x+y-10=0,,x-3y+10=0,))解得eq \b\lc\{(\a\vs4\al\c1(x=2,,y=4,))则C(2,4).故选C.
2.(创新型)(多选)定义点P(x0,y0)到直线l:ax+by+c=0(a2+b2≠0)的有向距离为d=eq \f(ax0+by0+c,\r(a2+b2)).已知点P1,P2到直线l的有向距离分别是d1,d2.则以下命题不正确的是( )
A.若d1=d2=1,则直线P1P2与直线l平行
B.若d1=1,d2=-1,则直线P1P2与直线l垂直
C.若d1+d2=0,则直线P1P2与直线l垂直
D.若d1·d2≤0,则直线P1P2与直线l相交
解析:选BCD.对于A,若d1=d2=1,则ax1+by1+c=ax2+by2+c=eq \r(a2+b2),直线P1P2与直线l平行,正确;
对于B,点P1,P2在直线l的两侧且到直线l的距离相等,P1P未必与l垂直,错误;
对于C,若d1=d2=0,即ax1+by1+c=ax2+by2+c=0,则点P1,P2都在直线l上,所以此时直线P1P2与直线l重合,错误;
对于D,若d1·d2≤0,即(ax1+by1+c)(ax2+by2+c)≤0,所以点P1,P2分别位于直线l的两侧或在直线l上,所以直线P1P2与直线l相交或重合,错误.
3.设m∈R,过定点A的动直线x+my=0和过定点B的动直线mx-y-m+3=0交于点P(x,y),则|PA|·|PB|的最大值是________.
解析:易知定点A(0,0),B(1,3),且无论m取何值,两直线垂直.
所以无论P与A,B重合与否,均有|PA|2+|PB|2=|AB|2=10(P在以AB为直径的圆上).
所以|PA|·|PB|≤eq \f(1,2)(|PA|2+|PB|2)=5.
当且仅当|PA|=|PB|=eq \r(5)时等号成立.
答案:5
4.如图,已知A(-2,0),B(2,0),C(0,2),E(-1,0),F(1,0),一束光线从F点出发射到BC上的D点,经BC反射后,再经AC反射,落到线段AE上(不含端点),则直线FD的斜率的取值范围为________.
解析:从特殊位置考虑.如图,因为点A(-2,0)关于直线BC:
x+y=2的对称点为A1(2,4),所以kA1F=4.又点E(-1,0)关于直线AC:y=x+2的对称点为E1(-2,1),点E1(-2,1)关于直线BC:x+y=2的对称点为E2(1,4),此时直线E2F的斜率不存在,所以kFD>kA1F,即kFD∈(4,+∞).
答案:(4,+∞)
5.已知直线l:x-y+3=0.
(1)求点A(2,1)关于直线l:x-y+3=0的对称点A′;
(2)求直线l1:x-2y-6=0关于直线l的对称直线l2的方程.
解:(1)设点A′(x′,y′),
由题知eq \b\lc\{(\a\vs4\al\c1(\f(y′-1,x′-2)×1=-1,,\f(x′+2,2)-\f(y′+1,2)+3=0,))解得eq \b\lc\{(\a\vs4\al\c1(x′=-2,,y′=5,))
所以A′(-2,5).
(2)在直线l1上取一点,如M(6,0),则M(6,0)关于直线l的对称点M′必在l2上.设对称点为M′(a,b),则eq \b\lc\{(\a\vs4\al\c1(\f(a+6,2)-\f(b+0,2)+3=0,,\f(b-0,a-6)×1=-1,))解得M′(-3,9).设l1与l的交点为N,则由eq \b\lc\{(\a\vs4\al\c1(x-y+3=0,,x-2y-6=0,))得N(-12,-9).又因为l2经过点N(-12,-9),所以直线l2的方程为
y-9=eq \f(9+9,-3+12)(x+3),即2x-y+15=0.
6.已知方程(2+λ)x-(1+λ)y-2(3+2λ)=0与点P(-2,2).
(1)证明对任意的实数λ,该方程都表示直线,且这些直线都经过同一定点,并求出这一定点的坐标;
(2)证明:该方程表示的直线与点P的距离d小于4eq \r(2).
解:(1)显然2+λ与-(1+λ)不可能同时为零,故对任意的实数λ,该方程都表示直线.
因为方程可变形为2x-y-6+λ(x-y-4)=0,
所以eq \b\lc\{(\a\vs4\al\c1(2x-y-6=0,,x-y-4=0,))解得eq \b\lc\{(\a\vs4\al\c1(x=2,,y=-2,))
故直线经过的定点为M(2,-2).
(2)证明:过点P作直线的垂线段PQ,由垂线段小于斜线段知|PQ|≤|PM|,当且仅当Q与M重合时,|PQ|=|PM|,
此时对应的直线方程是y+2=x-2,即x-y-4=0.
但直线系方程唯独不能表示直线x-y-4=0,
所以M与Q不可能重合,即|PM|=4eq \r(2),
所以|PQ|<4eq \r(2),故所证成立.条件
两直线位置关系
斜率的关系
两条不重合的直线l1,l2,斜率分别为k1,k2
平行
k1=k2
k1与k2都不存在
垂直
k1k2=-1
k1与k2一个为零、另一个不存在
点点距
点P1(x1,y1),P2(x2,y2)之间的距离
|P1P2|=eq \r((x2-x1)2+(y2-y1)2)
点线距
点P0(x0,y0)到直线l:Ax+By+C=0的距离
d=eq \f(|Ax0+By0+C|,\r(A2+B2))
线线距
两条平行线Ax+By+C1=0与Ax+By+C2=0间的距离
d=eq \f(|C1-C2|,\r(A2+B2))
新高考数学一轮复习学案 第8章 §8.2 两条直线的位置关系(含解析): 这是一份新高考数学一轮复习学案 第8章 §8.2 两条直线的位置关系(含解析),共13页。学案主要包含了两条直线的平行与垂直,两条直线的交点坐标,三种距离公式等内容,欢迎下载使用。
2025年高考数学一轮复习-第2课时-两直线的位置关系【导学案】: 这是一份2025年高考数学一轮复习-第2课时-两直线的位置关系【导学案】,共11页。学案主要包含了课标解读,课程标准,核心素养,命题说明,必备知识·逐点夯实,核心考点·分类突破,加练备选等内容,欢迎下载使用。
2024届高考数学一轮复习第8章第2节两直线的位置关系、距离公式学案: 这是一份2024届高考数学一轮复习第8章第2节两直线的位置关系、距离公式学案,共16页。学案主要包含了教材概念·结论·性质重现,基本技能·思想·活动经验等内容,欢迎下载使用。