- 2021版新高考地区高考数学(人教版)大一轮复习(课件+学案+高效演练分层突破)第09章 第5讲 第2课时 直线与椭圆 课件 15 次下载
- 2021版新高考地区高考数学(人教版)大一轮复习(课件+学案+高效演练分层突破)第09章 第3讲 圆的方程 课件 14 次下载
- 2021版新高考地区高考数学(人教版)大一轮复习(课件+学案+高效演练分层突破)第09章 第5讲 第1课时 椭圆及其性质 课件 13 次下载
- 2021版新高考地区高考数学(人教版)大一轮复习(课件+学案+高效演练分层突破)第09章 第6讲 双曲线 课件 13 次下载
- 2021版新高考地区高考数学(人教版)大一轮复习(课件+学案+高效演练分层突破)第09章 第4讲 直线与圆、圆与圆的位置关系 课件 14 次下载
2021版新高考地区高考数学(人教版)大一轮复习(课件+学案+高效演练分层突破)第09章 第2讲 两直线的位置关系
展开[基础题组练]
1.已知直线ax+2y+2=0与3x-y-2=0平行,则系数a=( )
A.-3 B.-6
C.- D.
解析:选B.由直线ax+2y+2=0与直线3x-y-2=0平行知,-=3,a=-6.
2.已知直线4x+my-6=0与直线5x-2y+n=0垂直,垂足为(t,1),则n的值为( )
A.7 B.9
C.11 D.-7
解析:选A.由直线4x+my-6=0与直线5x-2y+n=0垂直得,20-2m=0,m=10.直线4x+10y-6=0过点(t,1),所以4t+10-6=0,t=-1.点(-1,1)又在直线5x-2y+n=0上,所以-5-2+n=0,n=7.
3.若点P在直线3x+y-5=0上,且P到直线x-y-1=0的距离为,则点P的坐标为( )
A.(1,2) B.(2,1)
C.(1,2)或(2,-1) D.(2,1)或(-1,2)
解析:选C.设P(x,5-3x),则d==,化简得|4x-6|=2,
即4x-6=±2,解得x=1或x=2,
故P(1,2)或(2,-1).
4.直线ax+y+3a-1=0恒过定点M,则直线2x+3y-6=0关于M点对称的直线方程为( )
A.2x+3y-12=0 B.2x-3y-12=0
C.2x-3y+12=0 D.2x+3y+12=0
解析:选D.由ax+y+3a-1=0,可得a(x+3)+(y-1)=0,令可得x=-3,y=1,所以M(-3,1),M不在直线2x+3y-6=0上,设直线2x+3y-6=0关于M点对称的直线方程为2x+3y+c=0(c≠-6),则=,解得c=12或c=-6(舍去),所以所求方程为2x+3y+12=0,故选D.
5.直线2x-y+3=0关于直线x-y+2=0对称的直线方程是( )
A.x-2y+3=0 B.x-2y-3=0
C.x+2y+1=0 D.x+2y-1=0
解析:选A.设所求直线上任意一点P(x,y),则P关于x-y+2=0的对称点为P′(x0,y0),
由得
由点P′(x0,y0)在直线2x-y+3=0上,
所以2(y-2)-(x+2)+3=0,即x-2y+3=0.
6.过两直线l1:x-3y+4=0和l2:2x+y+5=0的交点和原点的直线方程为________.
解析:过两直线交点的直线系方程为x-3y+4+λ(2x+y+5)=0,代入原点坐标,求得λ=-,故所求直线方程为x-3y+4-(2x+y+5)=0,即3x+19y=0.
答案:3x+19y=0
7.已知直线l1:ax+y+3a-4=0和l2:2x+(a-1)y+a=0,则原点到l1的距离的最大值是________;若l1∥l2,则a=________.
解析:直线l1:ax+y+3a-4=0等价于a(x+3)+y-4=0,则直线过定点A(-3,4),当原点到l1的距离最大时,满足OA⊥l1,此时原点到l1的距离的最大值为|OA|==5.
若a=0,则两直线方程为y-4=0和2x-y=0,不满足直线平行;
若a=1,则两直线方程为x+y-1=0和2x+1=0,不满足直线平行;
当a≠0且a≠1时,若两直线平行,则=≠,
由=得a2-a-2=0,解得a=2或a=-1.
当a=2时,=,舍去,
当a=-1时,≠,成立,即a=-1.
答案:5 -1
8.已知点A(-1,2),B(3,4).P是x轴上一点,且|PA|=|PB|,则△PAB的面积为________.
解析:设AB的中点坐标为M(1,3),
kAB==,
所以AB的中垂线方程为y-3=-2(x-1).
即2x+y-5=0.令y=0,则x=,
即P点的坐标为(,0),
|AB|==2.
点P到AB的距离为|PM|==.
所以S△PAB=|AB|·|PM|=×2×=.
答案:
9.已知两直线l1:ax-by+4=0和l2:(a-1)x+y+b=0,求满足下列条件的a,b的值.
(1)l1⊥l2,且直线l1过点(-3,-1);
(2)l1∥l2,且坐标原点到这两条直线的距离相等.
解:(1)因为l1⊥l2,
所以a(a-1)-b=0.
又因为直线l1过点(-3,-1),
所以-3a+b+4=0.
故a=2,b=2.
(2)因为直线l2的斜率存在,l1∥l2,
所以直线l1的斜率存在.
所以=1-a.①
又因为坐标原点到这两条直线的距离相等,
所以l1,l2在y轴上的截距互为相反数,即=b.②
联立①②可得a=2,b=-2或a=,b=2.
10.已知△ABC的顶点A(5,1),AB边上的中线CM所在直线方程为2x-y-5=0,AC边上的高BH所在直线方程为x-2y-5=0,求直线BC的方程.
解:依题意知:kAC=-2,A(5,1),
所以lAC的方程为2x+y-11=0,
联立得C(4,3).
设B(x0,y0),则AB的中点M,
代入2x-y-5=0,得2x0-y0-1=0,
联立得B(-1,-3),
所以kBC=,所以直线BC的方程为y-3=(x-4),即6x-5y-9=0.
[综合题组练]
1.已知直线y=2x是△ABC中∠C的平分线所在的直线,若点A,B的坐标分别是(-4,2),(3,1),则点C的坐标为( )
A.(-2,4) B.(-2,-4)
C.(2,4) D.(2,-4)
解析:选C.设A(-4,2)关于直线y=2x的对称点为(x,y),则解得所以BC所在直线方程为y-1=(x-3),即3x+y-10=0.同理可得点B(3,1)关于直线y=2x的对称点为(-1,3),所以AC所在直线方程为y-2=·(x+4),即x-3y+10=0.联立得解得则C(2,4).故选C.
2.(创新型)(多选)定义点P(x0,y0)到直线l:ax+by+c=0(a2+b2≠0)的有向距离为d=.已知点P1,P2到直线l的有向距离分别是d1,d2.则以下命题不正确的是( )
A.若d1=d2=1,则直线P1P2与直线l平行
B.若d1=1,d2=-1,则直线P1P2与直线l垂直
C.若d1+d2=0,则直线P1P2与直线l垂直
D.若d1·d2≤0,则直线P1P2与直线l相交
解析:选BCD.对于A,若d1=d2=1,则ax1+by1+c=ax2+by2+c=,直线P1P2与直线l平行,正确;
对于B,点P1,P2在直线l的两侧且到直线l的距离相等,P1P未必与l垂直,错误;
对于C,若d1=d2=0,即ax1+by1+c=ax2+by2+c=0,则点P1,P2都在直线l上,所以此时直线P1P2与直线l重合,错误;
对于D,若d1·d2≤0,即(ax1+by1+c)(ax2+by2+c)≤0,所以点P1,P2分别位于直线l的两侧或在直线l上,所以直线P1P2与直线l相交或重合,错误.
3.设m∈R,过定点A的动直线x+my=0和过定点B的动直线mx-y-m+3=0交于点P(x,y),则|PA|·|PB|的最大值是________.
解析:易知定点A(0,0),B(1,3),且无论m取何值,两直线垂直.
所以无论P与A,B重合与否,均有|PA|2+|PB|2=|AB|2=10(P在以AB为直径的圆上).
所以|PA|·|PB|≤(|PA|2+|PB|2)=5.
当且仅当|PA|=|PB|=时等号成立.
答案:5
4.如图,已知A(-2,0),B(2,0),C(0,2),E(-1,0),F(1,0),一束光线从F点出发射到BC上的D点,经BC反射后,再经AC反射,落到线段AE上(不含端点),则直线FD的斜率的取值范围为________.
解析:从特殊位置考虑.如图,因为点A(-2,0)关于直线BC:
x+y=2的对称点为A1(2,4),所以kA1F=4.又点E(-1,0)关于直线AC:y=x+2的对称点为E1(-2,1),点E1(-2,1)关于直线BC:x+y=2的对称点为E2(1,4),此时直线E2F的斜率不存在,所以kFD>kA1F,即kFD∈(4,+∞).
答案:(4,+∞)
5.已知直线l:x-y+3=0.
(1)求点A(2,1)关于直线l:x-y+3=0的对称点A′;
(2)求直线l1:x-2y-6=0关于直线l的对称直线l2的方程.
解:(1)设点A′(x′,y′),
由题知解得
所以A′(-2,5).
(2)在直线l1上取一点,如M(6,0),则M(6,0)关于直线l的对称点M′必在l2上.设对称点为M′(a,b),则解得M′(-3,9).设l1与l的交点为N,则由得N(-12,-9).又因为l2经过点N(-12,-9),所以直线l2的方程为
y-9=(x+3),即2x-y+15=0.
6.已知方程(2+λ)x-(1+λ)y-2(3+2λ)=0与点P(-2,2).
(1)证明对任意的实数λ,该方程都表示直线,且这些直线都经过同一定点,并求出这一定点的坐标;
(2)证明:该方程表示的直线与点P的距离d小于4.
解:(1)显然2+λ与-(1+λ)不可能同时为零,故对任意的实数λ,该方程都表示直线.
因为方程可变形为2x-y-6+λ(x-y-4)=0,
所以解得
故直线经过的定点为M(2,-2).
(2)证明:过点P作直线的垂线段PQ,由垂线段小于斜线段知|PQ|≤|PM|,当且仅当Q与M重合时,|PQ|=|PM|,
此时对应的直线方程是y+2=x-2,即x-y-4=0.
但直线系方程唯独不能表示直线x-y-4=0,
所以M与Q不可能重合,即|PM|=4,
所以|PQ|<4,故所证成立.