重庆市綦江区2023年数学八年级第一学期期末综合测试试题【含解析】
展开1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。
2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。
4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(每题4分,共48分)
1.把x2y-y分解因式,正确的是( )
A.y(x2-1)B.y(x+1)C.y(x-1)D.y(x+1)(x-1)
2.将一副三角板按如图放置,则下列结论①;②如果,则有;③如果,则有;④如果,必有,其中正确的有( )
A.①②③B.①②④C.③④D.①②③④
3.如图,中,、的垂直平分线分别交于、,则( )
A.B.
C.D.
4.如图所示,小琳总结了“解可化为一元一次方程的分式方程”的运算流程,那么A和B分别代表的是( )
A.分式的基本性质,最简公分母=0
B.分式的基本性质,最简公分母≠0
C.等式的基本性质2,最简公分母=0
D.等式的基本性质2,最简公分母≠0
5.如图,平面直角坐标系xOy中,点A在第一象限,B(2,0),∠AOB=60°,∠ABO=90°.在x轴上取一点P(m,0),过点P作直线l垂直于直线OA,将OB关于直线l的对称图形记为O′B′,当O′B′和过A点且平行于x轴的直线有交点时,m的取值范围为( )
A.m≥4B.m≤6C.4<m<6D.4≤m≤6
6.已知一次函数,图象与轴、轴交点、点,得出下列说法:
①A,;
②、两点的距离为5;
③的面积是2;
④当时,;
其中正确的有( )
A.1个B.2个C.3个D.4个
7.下列调查中,调查方式最适合普查(全面调查)的是( )
A.对全国初中学生视力情况的调查
B.对2019年央视春节联欢晚会收视率的调查
C.对一批飞机零部件的合格情况的调查
D.对我市居民节水意识的调查
8.如果分式的值为0,则x的值是( )
A.1B.0C.﹣1D.±1
9.2-3的倒数是( )
A.8B.-8C.D.-
10.如图,已知△ABC的面积为12,BP平分∠ABC,且AP⊥BP于点P,则△BPC的面积是( )
A.10B.8C.6D.4
11.在直角坐标系中,已知点在直线上,则的值为( )
A.B.C.D.
12.如下书写的四个汉字,其中为轴对称图形的是( )
A.B.C.D.
二、填空题(每题4分,共24分)
13.如图,等边三角形的顶点A(1,1)、B(3,1),规定把等边△ABC“先沿y轴翻折,再向下平移1个单位”为一次变换,如果这样连续经过2020次变换后,等边△ABC的顶点C的坐标为____.
14.如图,在△ABC 中,AB=AC=12,BC=8, BE 是高,且点 D、F 分别是边 AB、BC 的中点,则△DEF 的周长等于_____________________.
15.如图,在△ABC 中,∠ACB=90°,AC=6cm,BC=8cm,分别以三角形的三条边为边作正方形,则三个正方形的面 S1+S2+S3 的值为_______.
16.一组数据2、3、-1、0、1的方差是_____.
17.如图,已知,请你添加一个条件使__________.
18.点P关于轴的对称点坐标为________.
三、解答题(共78分)
19.(8分)阅读理解:
(x-1)(x+1)=x2-1 ,
(x-1)(x2+x+1)=x3-1 ,
(x-1)(x3+x2+x+1)=x4-1 ,
……
拓展应用:
(1)分解因式:
(2)根据规律可得(x-1)(xn-1+……+x +1)= (其中n为正整数)
(3)计算:
20.(8分)如图,在四边形ABCD中,.
(1)度;
(2)若的角平分线与的角平分线相交于点E,求的度数.
21.(8分)计算题:
化简:
先化简再求值:,其中
22.(10分)阅读以下材料:
对数的创始人是苏格兰数学家纳皮尔(J.Napier,1550-1617年),纳皮尔发明对数是在指数书写方式之前,直到18世纪瑞士数学家欧拉(Euler,1707-1783年)才发现指数与对数之间的联系,对数的定义:一般地,若,那么x叫做以a为底N的对数,记作:,比如指数式可以转化为,对数式可以转化为,我们根据对数的定义可得到对数的一个性质: ),理由如下:
设则
∴,由对数的定义得
又∵,
所以,解决以下问题:
(1)将指数转化为对数式____;计算___;
(2)求证:
(3)拓展运用:计算
23.(10分)某市对城区部分路段的人行道地砖、绿化带、排水管等公用设施进行全面更新改造,根据市政建设的需要,需在35天内完成工程.现有甲、乙两个工程队有意承包这项工程,经调查知道,乙工程队单独完成此项工程的时间是甲工程队单独完成此项工程时间的2倍,若甲、乙两工程队合作,只需10天完成.
(1)甲、乙两个工程队单独完成此项工程各需多少天?
(2)若甲工程队每天的工程费用是4万元,乙工程队每天的工程费用是2.5万元,请你设计一种方案,既能按时完工,又能使工程费用最少.
24.(10分)已知△ABC中,AB=AC,点P是AB上一动点,点Q是AC的延长线上一动点,且点P从B运动向A、点Q从C运动向Q移动的时间和速度相同,PQ与BC相交于点D,若AB=,BC=1.
(1)如图1,当点P为AB的中点时,求CD的长;
(2)如图②,过点P作直线BC的垂线,垂足为E,当点P、Q在移动的过程中,设BE+CD=λ,λ是否为常数?若是请求出λ的值,若不是请说明理由.
25.(12分)如图,,求证:.
26.阅读下列解题过程:
已知,,为△ABC的三边长,且满足,试判断△ABC的形状.
解:∵ , ①
∴ . ②
∴ . ③
∴ △ABC是直角三角形. ④
回答下列问题:
(1)上述解题过程,从哪一步开始出现错误?请写出该步的代码为 .
(2)错误的原因为 .
(3)请你将正确的解答过程写下来.
参考答案
一、选择题(每题4分,共48分)
1、D
【解析】试题解析:原式
故选D.
点睛:因式分解的常用方法:提取公因式法,公式法,十字相乘法.
2、D
【分析】根据∠1+∠2=∠3+∠2即可证得①;根据求出∠1与∠E的度数大小即可判断②;利用∠2求出∠3,与∠B的度数大小即可判断③;利用求出∠1,即可得到∠2的度数,即可判断④.
【详解】∵∠1+∠2=∠3+∠2=90,
∴∠1=∠3,故①正确;
∵,
∴
∠E=60,
∴∠1=∠E,
∴AC∥DE,故②正确;
∵,
∴,
∵,
∴∠3=∠B,
∴,故③正确;
∵,
∴∠CFE=∠C,
∵∠CFE+∠E=∠C+∠1,
∴∠1=∠E=,
∴∠2=90-∠1=,故④正确,
故选:D.
【点睛】
此题考查互余角的性质,平行线的判定及性质,熟练运用解题是关键.
3、D
【分析】根据线段的垂直平分线的性质得到DA=DB,EA=EC,得到∠B=∠DAB和∠C=∠EAC,根据三角形内角和定理计算得到答案.
【详解】
∵DM是线段AB的垂直平分线,
∴DA=DB,
∴∠B=∠DAB,
同理∠C=∠EAC,
∵,即,
又∵,
∴,
整理得:,
故选:D.
【点睛】
本题主要考查的是线段垂直平分线的性质及等腰三角形的性质,三角形的内角和定理知识点的理解和掌握,能综合运用这些性质进行列式计算是解此题的关键.
4、C
【解析】根据解分式方程的步骤,可得答案.
【详解】去分母得依据是等式基本性质2,
检验时最简公分母等于零,原分式方程无解.
故答案选:C.
【点睛】
本题考查了解分式方程,解题的关键是熟练的掌握解分式方程的方法.
5、D
【分析】根据题意可以作出合适的辅助线,然后根据题意,利用分类讨论的方法可以计算出m的两个极值,从而可以得到m的取值范围.
【详解】解:如图所示,
当直线l垂直平分OA时,O′B′和过A点且平行于x轴的直线有交点,
∵点A在第一象限,B(2,0),∠AOB=60°,∠ABO=90°,
∴∠BAO=30°,OB=2,
∴OA=4,
∵直线l垂直平分OA,点P(m,0)是直线l与x轴的交点,
∴OP=4,
∴当m=4;
作BB″∥OA,交过点A且平行于x轴的直线与B″,
当直线l垂直平分BB″和过A点且平行于x轴的直线有交点,
∵四边形OBB″O′是平行四边形,
∴此时点P与x轴交点坐标为(6,0),
由图可知,当OB关于直线l的对称图形为O′B′到O″B″的过程中,点P符合题目中的要求,
∴m的取值范围是4≤m≤6,
故选:D.
【点睛】
本题考查坐标与图形的变化−对称,解答本题的关键是明确题意,作出合适的辅助线,利用数形结合的思想解答.
6、B
【分析】①根据坐标轴上点的坐标特点即得;
②根据两点之间距离公式求解即得;
③先根据坐标求出与,再计算面积即可;
④先将转化为不等式,再求解即可.
【详解】∵在一次函数中,当时
∴A
∵在一次函数中,当时
∴
∴①正确;
∴两点的距离为
∴②是错的;
∵,,
∴
∴③是错的;
∵当时,
∴,
∴④是正确的;
∴说法①和④是正确
∴正确的有2个
故选:B.
【点睛】
本题主要考查了一次函数与坐标轴的交点、两点距离公式及一次函数与不等式的关系,熟练掌握坐标轴上点的坐标特点及一次函数与不等式的相互转化是解题关键.
7、C
【分析】根据普查和抽样调查的特点解答即可.
【详解】解:A.对全国初中学生视力情况的调查,适合用抽样调查,不合题意;
B.对2019年央视春节联欢晚会收视率的调查,适合用抽样调查,不合题意;
C.对一批飞机零部件的合格情况的调查,适合全面调查,符合题意;
D.对我市居民节水意识的调查,适合用抽样调查,不合题意;
故选:C.
【点睛】
本题考查了抽样调查和全面调查的知识,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.
8、A
【解析】试题解析:分式的值为0,
且
解得
故选A.
点睛:分式值为零的条件:分子为零,分母不为零.
9、A
【分析】利用负整数指数幂法则,以及倒数的定义判断即可.
【详解】2-3==,
则2-3的倒数是8,
故选:A.
【点睛】
本题考查了负整数指数幂,以及倒数,熟练掌握运算法则是解本题的关键.
10、C
【分析】延长AP交BC于E,根据已知条件证得△ABP≌△EBP,根据全等三角形的性质得到AP=PE,得出S△ABP=S△EBP,S△ACP=S△ECP,推出S△PBC=S△ABC.
【详解】解:延长AP交BC于E,
∵BP平分∠ABC,
∴∠ABP=∠EBP,
∵AP⊥BP,
∴∠APB=∠EPB=90°,
在△ABP和△EBP中,,
∴△ABP≌△EBP(ASA),
∴AP=PE,
∴S△ABP=S△EBP,S△ACP=S△ECP,
∴S△PBC=S△ABC=×12=6.
故选C.
【点睛】
本题考查了全等三角形的判定与性质,三角形的面积,主要利用了等底等高的三角形的面积相等,作辅助线构造出全等三角形是解题的关键.
11、D
【分析】根据题意,将点代入直线中即可的到的值.
【详解】将点代入直线中得:,
故选:D.
【点睛】
本题主要考查了由直线解析式求点坐标的相关知识,熟练掌握代入法求未知点的坐标是解决本题的关键.
12、B
【分析】轴对称图形的定义:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.
【详解】解:根据轴对称图形的定义可得只有“善”符合条件,故选B.
【点睛】
本题考查轴对称图形的定义,本题属于基础应用题,只需学生熟练掌握轴对称图形的定义,即可完成.
二、填空题(每题4分,共24分)
13、 (2,).
【分析】据轴对称判断出点C变换后在y轴的右侧,根据平移的距离求出点C变换后的纵坐标,最后写出即可.
【详解】∵△ABC是等边三角形,AB=3﹣1=2,
∴点C到y轴的距离为1+2×=2,点C到AB的距离为=,
∴C(2,+1),
把等边△ABC先沿y轴翻折,得C’(-2,+1),再向下平移1个单位得C’’( -2,)
故经过一次变换后,横坐标变为相反数,纵坐标减1,
故第2020次变换后的三角形在y轴右侧,
点C的横坐标为2,
纵坐标为+1﹣2020=﹣2019,
所以,点C的对应点C'的坐标是(2,﹣2019).
故答案为:(2,﹣2019).
【点睛】
本题考查了坐标与图形变化−平移,等边三角形的性质,读懂题目信息,确定出连续2020次这样的变换得到三角形在y轴右侧是解题的关键.
14、1
【分析】根据三角形中位线定理分别求出DF,再根据直角三角形斜边的中线等于斜边的一半计算出DE、EF即可.
【详解】解: 点D、F分别是边AB、BC的中点,
∴DF=AC=6
∵BE 是高
∴∠BEC=∠BEA=90°
∴DE=AB=6,EF=BC=4
∴△DEF的周长=DE+DF+EF=1
故答案为:1.
【点睛】
本题考查了直角三角形斜边上的中线等于斜边的一半的性质,三角形中位线的性质,掌握直角三角形斜边上的中线等于斜边的一半和三角形中位线的性质是解题的关键.
15、200
【分析】根据正方形的面积公式和勾股定理,即可得到阴影部分的面积S1+S2+S3的值.
【详解】解:∵∠ACB=90°,AC=6,BC=8,
∴AB2=AC2+BC2=62+82=100
∴S1+S2+S3=AC2+BC2 +AB2=62+82+100=200
故答案为:200
【点睛】
本题考查勾股定理,解题关键是将勾股定理和正方形的面积公式进行结合应用.
16、2
【解析】先利用公式求出这组数据的平均数,再根据方差的计算公式即可得出答案
【详解】平均数
则方差.
故答案为:2.
【点睛】
本题考查方差的定义以及平均数求法,熟记公式是解题关键,方差反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.
17、AC=AE或∠ADE=∠ABC或∠C=∠E(答案不唯一)
【分析】根据图形可知证明△ABC≌△ADE已经具备了一个公共角和一对相等边,因此可以利用ASA、SAS、AAS证明两三角形全等.
【详解】解:∵∠A=∠A,AB=AD,
∴添加条件AC=AE,此时满足SAS;
添加条件∠ADE=∠ABC,此时满足ASA;
添加条件∠C=∠E,此时满足AAS,
故答案为:AC=AE或∠ADE=∠ABC或∠C=∠E(答案不唯一).
【点睛】
本题考查了全等三角形的判定,是一道开放题,解题的关键是牢记全等三角形的判定方法.
18、
【分析】根据点的坐标关于坐标轴对称的方法“关于谁对称,谁就不变,另一个互为相反数”可直接求解.
【详解】解:由点P关于轴的对称点坐标为;
故答案为.
【点睛】
本题主要考查点的坐标关于坐标轴对称,熟练掌握点的坐标关于坐标轴对称的方法是解题的关键.
三、解答题(共78分)
19、(1)(2)(3)
【分析】(1)仿照题目中给出的例子分解因式即可;
(2)根据题目中的例子找到规律即可得出答案;
(3)根据规律先给原式乘以,再除以即可得出答案.
【详解】(1)根据题意有
;
(2)根据题中给出的规律可知,
;
(3)原式=
.
【点睛】
本题主要考查规律探索,找到规律是解题的关键 .
20、(1);(2)
【分析】(1)根据四边形内角和为360°即可得出答案;
(2)先根据角平分线的定义求出的度数,然后利用三角形内角和定理即可得出答案.
【详解】(1);
(2)∵AE平分 ,BE平分
【点睛】
本题主要考查四边形内角和及三角形内角和定理,掌握三角形内角和定理及四边形内角和为360°是解题的关键.
21、(1);(2);.
【分析】(1)先分别计算乘方,再将结果进行乘除计算;
(2)先计算括号内的易分母分式减法,再计算除法,最后计算减法,化简后将x的值代入计算求出结果.
【详解】解:,
,
,
;
,
,
,
当时,原式.
【点睛】
此题考查分式的混合运算,化简求值运算,掌握正确的计算顺序是混合计算的关键.
22、(1),3;(2)证明见解析;(3)1
【分析】(1)根据题意可以把指数式43=64写成对数式;
(2)先设lgaM=m,lgaN=n,根据对数的定义可表示为指数式为:M=am,N=an,计算的结果,同理由所给材料的证明过程可得结论;
(3)根据公式:lga(M•N)=lgaM+lgaN和=lgaM−lgaN的逆用,将所求式子表示为:lg3(2×6÷4),计算可得结论.
【详解】解:(1)由题意可得,指数式43=64写成对数式为:3=lg464,
故答案为:3=lg464;
(2)设lgaM=m,lgaN=n,则M=am,N=an,
∴==am−n,由对数的定义得m−n=,
又∵m−n=lgaM−lgaN,
∴=lgaM−lgaN(a>0,a≠1,M>0,N>0);
(3)lg32+lg36−lg34,
=lg3(2×6÷4),
=lg33,
=1,
故答案为:1.
【点睛】
本题考查整式的混合运算、对数与指数之间的关系与相互转化的关系,解题的关键是明确新定义,明白指数与对数之间的关系与相互转化关系.
23、(1)甲工程队单独完成该工程需15天,则乙工程队单独完成该工程需30天;(2)应该选择甲工程队承包该项工程.
【分析】(1)设甲工程队单独完成该工程需x天,则乙工程队单独完成该工程需2x天.再根据“甲、乙两队合作完成工程需要10天”,列出方程解决问题;
(2)首先根据(1)中的结果,从而可知符合要求的施工方案有三种:方案一:由甲工程队单独完成;方案二:由乙工程队单独完成;方案三:由甲乙两队合作完成.针对每一种情况,分别计算出所需的工程费用.
【详解】(1)设甲工程队单独完成该工程需天,则乙工程队单独完成该工程需天.
根据题意得:
方程两边同乘以,得
解得:
经检验,是原方程的解.
∴当时,.
答:甲工程队单独完成该工程需15天,则乙工程队单独完成该工程需30天.
(2)因为甲乙两工程队均能在规定的35天内单独完成,所以有如下三种方案:
方案一:由甲工程队单独完成.所需费用为:(万元);
方案二:由乙工程队单独完成.所需费用为:(万元);
方案三:由甲乙两队合作完成.所需费用为:(万元).
∵∴应该选择甲工程队承包该项工程.
【点睛】
本题考查分式方程在工程问题中的应用.分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.
24、(1)4;(2)2
【分析】(1)过P点作PF∥AC交BC于F,由点P和点Q同时出发,且速度相同,得出BP=CQ,根据PF∥AQ,可知∠PFB=∠ACB,∠DPF=∠CQD,则可得出∠B=∠PFB,证出BP=PF,得出PF=CQ,由AAS证明△PFD≌△QCD,得出,再证出F是BC的中点,即可得出结果;
(2)过点P作PF∥AC交BC于F,易知△PBF为等腰三角形,可得BE=BF,由(1)证明方法可得△PFD≌△QCD 则有CD=,即可得出BE+CD=2.
【详解】解:(1)如图①,过P点作PF∥AC交BC于F,
∵点P和点Q同时出发,且速度相同,
∴BP=CQ,
∵PF∥AQ,
∴∠PFB=∠ACB,∠DPF=∠CQD,
又∵AB=AC,
∴∠B=∠ACB,
∴∠B=∠PFB,
∴BP=PF,
∴PF=CQ,又∠PDF=∠QDC,
∴△PFD≌△QCD,
∴DF=CD=CF,
又因P是AB的中点,PF∥AQ,
∴F是BC的中点,即FC=BC=2,
∴CD=CF=4;
(2)为定值.
如图②,点P在线段AB上,
过点P作PF∥AC交BC于F,
易知△PBF为等腰三角形,
∵PE⊥BF
∴BE=BF
∵易得△PFD≌△QCD
∴CD=
∴
【点睛】
此题考查了等腰三角形的性质,全等三角形的判断与性质,熟悉相关性质定理是解题的关键.
25、见解析.
【解析】先证明CB=FE,再加上条件AB=DE,AC=DF,可利用SSS判定△ABC≌△DEF,根据全等三角形的性质可得∠B=∠DEF,∠ACB=∠F,再根据同位角相等,两直线平行可得结论.
【详解】证明:
∵,
∴
∴,
∵在△ABC和△DEF中,
∴,
∴ , ,
∴.
【点睛】
考查了全等三角形的判定与性质,关键是熟练掌握三角形的判定定理:SSS、SAS、ASA、AAS.证明三角形全等必须有边相等的条件.
26、(1)③;(2)忽略了 的可能;(3)见解析
【分析】(1)上述解题过程,从第三步出现错误,错误原因为在等式两边除以,没有考虑是否为0;
(2)正确的做法为:将等式右边的移项到方程左边,然后提取公因式将方程左边分解因式,根据两数相乘积为0,两因式中至少有一个数为0转化为两个等式;
(3)根据等腰三角形的判定,以及勾股定理的逆定理得出三角形为直角三角形或等腰三角形.
【详解】(1)根据题意可知,
∵由,
∴通过移项得,故③错误;
(2)由(1)可知,错误的原因是:忽略了的可能;
(3)正确的写法为:∵,
∴,
∴,
∴,
∴或,
∴或,
∴是等腰三角形或直角三角形或等腰直角三角形;
故答案为是等腰三角形或直角三角形或等腰直角三角形
【点睛】
本题考查勾股定理的逆定理的应用、分类讨论.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.
重庆市江津区2023年数学八年级第一学期期末综合测试试题【含解析】: 这是一份重庆市江津区2023年数学八年级第一学期期末综合测试试题【含解析】,共16页。试卷主要包含了数字用科学记数法表示为,下列说法正确的是,下列分式中,是最简分式的是,点M等内容,欢迎下载使用。
2023-2024学年重庆市綦江区八年级(上)期末数学试卷(含解析): 这是一份2023-2024学年重庆市綦江区八年级(上)期末数学试卷(含解析),共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2022-2023学年重庆市九龙坡区、綦江区八年级(下)期末数学试卷(含解析): 这是一份2022-2023学年重庆市九龙坡区、綦江区八年级(下)期末数学试卷(含解析),共32页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。