重庆市涪陵区涪陵第十九中学2023年数学八上期末检测模拟试题【含解析】
展开这是一份重庆市涪陵区涪陵第十九中学2023年数学八上期末检测模拟试题【含解析】,共20页。试卷主要包含了如果分式的值为0,那么x的值是,不等式组的整数解的个数是,若=2,则x的值为,下面的图形中对称轴最多的是,如图,C为线段AE上一动点,下列计算正确的是等内容,欢迎下载使用。
注意事项:
1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(每小题3分,共30分)
1.下列四个互联网公司lg中,是轴对称图形的是( )
A.B.C.D.
2.在平面直角坐标系中,线段的端点分别为,将线段平移到,且点的坐标为(8,4),则线段的中点的坐标为( )
A.(7,6)B.(6,7)C.( 6,8) D.(8,6)
3.若把分式中的、都扩大2倍,那么分式的值( )
A.扩大2倍B.不变C.缩小一半D.缩小4倍
4.若m<n<0,那么下列结论错误的是( )
A.m﹣9<n﹣9B.﹣m>﹣nC.D.2m<2n
5.如果分式的值为0,那么x的值是( )
A.1B.﹣1C.2D.﹣2
6.不等式组的整数解的个数是( )
A.2B.3C.4D.5
7.若=2,则x的值为( )
A.4B.8C.﹣4D.﹣5
8.下面的图形中对称轴最多的是( )
A.B.
C.D.
9.如图,C为线段AE上一动点(不与A、E重合),在AE同侧分别作正三角形ABC和正三角形CDE,AD与BE交于点O,AD与BC交于点P,BE与CD交于点Q,连结PQ,以下五个结论:①AD=BE;②PQ∥AE;③AP=BQ;④DE=DP;⑤∠AOB=60°其中完全正确的是( )
A.①②③④B.②③④⑤C.①③④⑤D.①②③⑤
10.下列计算正确的是( )
A.a3+a3=a6B.a3•a3=a9C.(a3)3=a9D.(3a3)3=9a3
二、填空题(每小题3分,共24分)
11.如图,直线y=kx+b与直线y=2x+6关于y轴对称且交于点A,直线y=2x+6交x轴于点B,直线y=kx+b交x轴于点C,正方形DEFG一边DG在线段BC上,点E在线段AB上,点F在线段AC上,则点G的坐标是____.
12.某水果店销售11元,18元,24元三种价格的水果,根据水果店一个月这三种水果销售量的统计图如图,可计算出该店当月销售出水果的平均价格是______元
13.已知线段AB//x轴,且AB=3,若点A的坐标为(-1,2),则点B的坐标为_______;
14.对点的一次操作变换记为,定义其变换法则如下: ;且规定(为大于1的整数).如: ,,则__________.
15.如图,点D、E分别在线段AB,AC上,AE=AD,不添加新的线段和字母,要使△ABE≌△ACD,需添加的一个条件是 (只写一个条件即可).
16.如图,将三角形纸板ABC沿直线AB平移,使点A移到点B,若∠CAB=60°,∠ABC=80°,则∠CBE的度数为_____.
17.如图,∠AOB=30°,OP平分∠AOB,PC∥OB交OA于C,PD⊥OB于D.如果PC=8,那么PD等于____________ .
18.如图,在平面直角坐标系中,点、的坐标分别为、,若将线段绕点顺时针旋转得到线段,则点的坐标为________.
三、解答题(共66分)
19.(10分)某工厂计划生产甲、乙两种产品共2500吨,每生产1吨甲产品可获得利润0.3万元,每生产1吨乙产品可获得利润0.4万元.设该工厂生产了甲产品x(吨),生产甲、乙两种产品获得的总利润为y(万元).
(1)求y与x之间的函数表达式;
(2)若每生产1吨甲产品需要A原料0.25吨,每生产1吨乙产品需要A原料0.5吨.受市场影响,该厂能获得的A原料至多为1000吨,其它原料充足.求出该工厂生产甲、乙两种产品各为多少吨时,能获得最大利润.
20.(6分)在如图的方格中,每个小正方形的边长都为1,△ABC的顶点均在格点上。在建立平面直角坐标系后,点B的坐标为(-1,2).
(1)把△ABC向下平移8个单位后得到对应的△,画出△,并写出坐标;
(2)以原点O为对称中心,画出与△关于原点O对称的△,并写出点的坐标.
21.(6分)某单位举行“健康人生”徒步走活动,某人从起点体育村沿建设路到市生态园,再沿原路返回,设此人离开起点的路程s(千米)与徒步时间t(小时)之间的函数关系如图所示,其中从起点到市生态园的平均速度是4千米/小时,用2小时,根据图象提供信息,解答下列问题.
(1)求图中的a值.
(2)若在距离起点5千米处有一个地点C,此人从第一次经过点C到第二次经过点C,所用时间为1.75小时.
①求AB所在直线的函数解析式;
②请你直接回答,此人走完全程所用的时间.
22.(8分)某乡镇企业生产部有技术工人15人,生产部为了合理制定产品的每月生产定额,统计了15人某月的加工零件个数:
(1)写出这15人该月加工零件数的平均数、中位数和众数.
(2)若以本次统计所得的月加工零件数的平均数定为每位工人每月的生产定额,你认为这个定额是否合理,为什么?
23.(8分)如图,已知∠B+∠CDE=180°,AC=CE.求证:AB=DE.
24.(8分)如图,点,,,在一条直线上,,,,求证:.
25.(10分)如图是由边长为1个单位长度的小正方形组成的网格,的三个顶点都在格点上.
(1)作出关于轴对称的,并写出点的坐标: .
(2)求出的面积.
26.(10分)(阅读材料)数学活动课上,李老师准备了若干张如图1的三种纸片,A种纸片是边长为a的正方形,B种纸片是边长为b的正方形,C种纸片是长为a,宽为b的长方形.并用A种纸片一张,B种纸片一张,C种纸片两张拼成如图2的大正方形.
(理解应用)
(1)用两种不同的方法计算出大正方形(图2)的面积,从而可以验证一个等式.这个等式为 ;
(2)根据(1)题中的等量关系,解决如下问题:
①已知:a+b=5,a2+b2=11,求ab的值;
②已知:(2019-a) 2+( a-2018) 2=5,求(2019-a) ( a-2018)的值.
参考答案
一、选择题(每小题3分,共30分)
1、D
【分析】根据轴对称图形的概念判断即可.
【详解】解:A、不是轴对称图形;
B、不是轴对称图形;
C、不是轴对称图形;
D、是轴对称图形;
故选:D.
【点睛】
本题考查的是轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.
2、A
【分析】根据点A、A1的坐标确定出平移规律,求出B1坐标,再根据中点的性质求解.
【详解】∵,(8,4),
∴平移规律为向右平移6个单位,向上平移4个单位,
∵,
∴点B1的坐标为(6,8),
∴线段的中点的坐标为,即(7,6),
故选A.
【点睛】
本题考查了坐标与图形变化−平移,平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.
3、C
【分析】可将式中的x,y都用2x,2y来表示,再将后来的式子与原式对比,即可得出答案.
【详解】解:由题意,分式中的x和y都扩大2倍,
∴=,
分式的值是原式的,即缩小一半,
故选:C.
【点睛】
本题考查了分式的基本性质,分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变,分子、分母、分式本身同时改变两处的符号,分式的值不变,掌握知识点是解题关键.
4、C
【解析】A:等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变,据此判断即可;
B:不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变,据此判断即可;
C:由倒数的定义即可得出结论;
D:不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变,据此判断即可.
【详解】因为m<n<0,所以m﹣9<n﹣9,A正确;
因为m<n<0,所以﹣m>﹣n,B正确;
因为m<n<0,所以,C错误;
因为m<n<0,所以2m<2n,D正确.
故选C.
【点睛】
本题考查了不等式的基本性质:(1)不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变;(2)不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变;(3)等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变.
5、C
【分析】根据分式值为0得出x-2=0且x+1≠0,求出即可.
【详解】由分式的值为零的条件得x-2=0,x+1≠0,
由x-2=0,得x=2,
由x+1≠0,得x≠-1,
即x的值为2.
故答案选:C.
【点睛】
本题考查了分式的值为零的条件,解题的关键是熟练的掌握分式的值为零的条件.
6、C
【分析】先分别求出每一个不等式的解集,然后确定出不等式组的解集,最后确定整数解的个数即可.
【详解】,
由①得:x>-2,
由②得:x<3,
所以不等式组的解集为:-2
故选C.
【点睛】
本题考查了一元一次不等式组的整数解,熟练掌握解一元一次不等式组的方法以及解集的确定方法是解题的关键.解集的确定方法:同大取大,同小取小,大小小大中间找,大大小小无解了.
7、B
【分析】根据立方根的定义,解答即可.
【详解】∵=2,
∴x=23=1.
故选:B.
【点睛】
本题主要考查立方根的定义,掌握“若=a,则a3=x”是解题的关键.
8、B
【分析】分别得出各选项对称轴的条数,进而得出答案.
【详解】A、有1条对称轴;
B、有4条对称轴;
C、有1条对称轴;
D、有2条对称轴;
综上可得:对称轴最多的是选项B.
故选:B.
【点睛】
本题主要考查了轴对称变换,正确得出每个图形的对称轴是解题关键.
9、D
【分析】①由于△ABC和△CDE是等边三角形,可知AC=BC,CD=CE,∠ACB=∠DCE=60°,从而证出△ACD≌△BCE,可推知AD=BE;
②由△ACD≌△BCE得∠CBE=∠DAC,加之∠ACB=∠DCE=60°,AC=BC,得到△CQB≌△CPA(ASA),再根据∠PCQ=60°推出△PCQ为等边三角形,又由∠PQC=∠DCE,根据内错角相等,两直线平行,可知②正确;
③根据②△CQB≌△CPA(ASA),可知③正确;
④根据∠DQE=∠ECQ+∠CEQ=60°+∠CEQ,∠CDE=60°,可知∠DQE≠∠CDE,可知④错误;
⑤利用等边三角形的性质,BC∥DE,再根据平行线的性质得到∠CBE=∠DEO,于是∠AOB=∠DAC+∠BEC=∠BEC+∠DEO=∠DEC=60°,可知⑤正确.
【详解】解:∵等边△ABC和等边△CDE,
∴AC=BC,CD=CE,∠ACB=∠DCE=60°,
∴∠ACB+∠BCD=∠DCE+∠BCD,即∠ACD=∠BCE,
∴△ACD≌△BCE(SAS),
∴AD=BE,
∴①正确,
∵△ACD≌△BCE,
∴∠CBE=∠DAC,
又∵∠ACB=∠DCE=60°,
∴∠BCD=60°,即∠ACP=∠BCQ,
又∵AC=BC,
∴△CQB≌△CPA(ASA),
∴CP=CQ,
又∵∠PCQ=60°可知△PCQ为等边三角形,
∴∠PQC=∠DCE=60°,
∴PQ∥AE②正确,
∵△CQB≌△CPA,
∴AP=BQ③正确,
∵AD=BE,AP=BQ,
∴AD-AP=BE-BQ,
即DP=QE,
∵∠DQE=∠ECQ+∠CEQ=60°+∠CEQ,∠CDE=60°,
∴∠DQE≠∠CDE,故④错误;
∵∠ACB=∠DCE=60°,
∴∠BCD=60°,
∵等边△DCE,
∠EDC=60°=∠BCD,
∴BC∥DE,
∴∠CBE=∠DEO,
∴∠AOB=∠DAC+∠BEC=∠BEC+∠DEO=∠DEC=60°,
∴⑤正确.
故选:D.
10、C
【分析】根据合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变;同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加;幂的乘方法则:底数不变,指数相乘;积的乘方法则:把每一个因式分别乘方,再把所得的幂相乘进行计算即可.
【详解】A、,此项错误
B、,此项错误
C、,此项正确
D、,此项错误
故选:C.
【点睛】
本题考查了整式的加减:合并同类项、同底数幂的乘法、幂的运算、积的乘方,熟记各运算法则是解题关键.
二、填空题(每小题3分,共24分)
11、 (,0).
【分析】根据轴对称求得直线AC的解析式,再根据正方形的性质以及轴对称的性质设G(m,0),则F(m,2m),代入直线AC的解析式,得到关于m的方程,解得即可.
【详解】解:由直线y=2x+6可知A(0,6),B(﹣3,0).
∵直线y=kx+b与直线y=2x+6关于y轴对称且交于点A,直线y=2x+6交x轴于点B,直线y=kx+b交x轴于点C,
∴直线AC为y=﹣2x+6,
设G(m,0),
∵正方形DEFG一边DG在线段BC上,点E在线段AB上,点F在线段AC上,
∴F(m,2m),
代入y=﹣2x+6得:2m=﹣2m+6,
解得:m,
∴G的坐标为(,0).
故答案为:(,0).
【点睛】
本题考查了一次函数图象与几何变换,正方形的性质,对称轴的性质,表示出F点的坐标是解题的关键.
12、
【解析】根据加权平均数的计算方法,分别用单价乘以相应的百分比,计算即可得解.
【详解】11×60%+18×15%+24×25%=15.1(元),
即该店当月销售出水果的平均价格是15.1元,
故答案为15.1.
【点睛】
本题考查扇形统计图及加权平均数,熟练掌握扇形统计图直接反映部分占总体的百分比大小及加权平均数的计算公式是解题的关键.
13、(-4,2)或(2,2)
【解析】A、B的纵坐标相同,横坐标为 ,则点B的坐标为(-4,2)或(2,2)
14、
【分析】根据所给的已知条件,找出题目中的变化规律,得出当n为奇数时的坐标,即可求出.
【详解】解:根据题意可得:
……
当n为偶数时,,
当n为奇数时,
故,即
故答案为.
【点睛】
本题考查了点的坐标,解题的关键是找出数字的变化规律,得出当n为奇数时的点的坐标,并根据规律解题.
15、∠B=∠C(答案不唯一).
【解析】由题意得,AE=AD,∠A=∠A(公共角),可选择利用AAS、SAS、ASA进行全等的判定,答案不唯一:
添加,可由AAS判定△ABE≌△ACD;
添加AB=AC或DB=EC可由SAS判定△ABE≌△ACD;
添加∠ADC=∠AEB或∠BDC=∠CEB,可由ASA判定△ABE≌△ACD.
16、40°
【分析】根据平移的性质得出△ACB≌△BED,进而得出∠EBD=60°,∠BDE=80°,进而得出∠CBE的度数.
【详解】∵将△ABC沿直线AB向右平移到达△BDE的位置,
∴△ACB≌△BED,
∵∠CAB=60°,∠ABC=80°,
∴∠EBD=60°,∠BDE=80°,
则∠CBE的度数为:180°﹣80°﹣60°=40°.
故答案为:40°.
【点睛】
此题主要考查了平移的性质,根据平移的性质得出∠EBD,∠BDE的度数是解题关键.
17、1
【分析】根据角平分线的性质,角平分线上的点到两角的距离相等,因而过P作PE⊥OA于点E,则PD=PE,因为PC∥OB,根据三角形的外角的性质得到:∠ECP=∠COP+∠OPC=30°,在直角△ECP中求得PD的长.
【详解】解:过P作PE⊥OA于点E,
∵OP平分∠AOB,PD⊥OB于D
∴PD=PE,
∵PC∥OB∴∠OPC=∠POD,
又∵OP平分∠AOB,∠AOB=30°,
∴∠OPC=∠COP=15°,
∠ECP=∠COP+∠OPC=30°,
在直角△ECP中,
则PD=PE=1.
故答案为:1.
【点睛】
本题主要考查了角平分线的性质和含有30°角的直角三角形的性质,正确作出辅助线是解决本题的关键.
18、
【分析】作AC⊥x轴于C,利用点A、B的坐标得到AC=2,BC=4,根据旋转的定义,可把Rt△BAC绕点B顺时针旋转90°得到△BA′C′,如图,利用旋转的性质得BC′=BC=4,A′C′=AC=2,于是可得到点A′的坐标.
【详解】作AC⊥x轴于C,
∵点A、B的坐标分别为(3,2)、(-1,0),
∴AC=2,BC=3+1=4,
把Rt△BAC绕点B顺时针旋转90°得到△BA′C′,如图,
∴BC′=BC=4,A′C′=AC=2,
∴点A′的坐标为(1,-4).
故答案为(1,-4).
【点睛】
本题考查了坐标与图形变化-旋转:图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.常见的是旋转特殊角度如:30°,45°,60°,90°,180°.解决本题的关键是把线段的旋转问题转化为直角三角形的旋转.
三、解答题(共66分)
19、(1);(2)工厂生产甲产品1000吨,乙产品1500吨时,能获得最大利润.
【解析】(1)利润y(元)=生产甲产品的利润+生产乙产品的利润;而生产甲产品的利润=生产1吨甲产品的利润0.3万元×甲产品的吨数x,即0.3x万元,生产乙产品的利润=生产1吨乙产品的利润0.4万元×乙产品的吨数(2500﹣x),即0.4(2500﹣x)万元.
(2)由(1)得y是x的一次函数,根据函数的增减性,结合自变量x的取值范围再确定当x取何值时,利润y最大.
【详解】(1).
(2)由题意得:,解得.
又因为,所以.
由(1)可知,,所以的值随着的增加而减小.
所以当时,取最大值,此时生产乙种产品(吨).
答:工厂生产甲产品1000吨,乙产品1500吨,时,能获得最大利润.
【点睛】
这是一道一次函数和不等式组综合应用题,准确地根据题目中数量之间的关系,求利润y与甲产品生产的吨数x的函数表达式,然后再利用一次函数的增减性和自变量的取值范围,最后确定函数的最值.也是常考内容之一.
20、(1)画图见解析;A1(-5,-6);(2)画图见解析;B2(1,6).
【分析】(1)根据网格结构找出点A、B、C向下平移8个单位的对应点A1、B1、C1的位置,然后顺次连接即可,再根据平面直角坐标系写出点A1坐标;
(2)根据网格结构找出点A1、B1、C1关于原点O对称的对应点A2、B2、C2的位置,然后顺次连接即可,再根据平面直角坐标系写出点B2坐标.
【详解】(1)△A1B1C1如图所示,A1(﹣5,﹣6);
(2)△A2B2C2如图所示,B2(1,6)
【点睛】
本题考查了利用旋转变换作图,利用平移变换作图,熟练掌握网格结构,准确找出对应点的位置是解题的关键.
21、(1)a=1;(2)①s=–3t+2;②t=.
【解析】(1)根据路程=速度×时间即可求出a值;
(2)①根据速度=路程÷时间求出此人返回时的速度,再根据路程=1-返回时的速度×时间即可得出AB所在直线的函数解析式;
②令①中的函数关系式中s=0,求出t值即可.
【详解】(1)a=4×2=1.
(2)①此人返回的速度为(1–5)÷(1.75–)=3(千米/小时),
AB所在直线的函数解析式为s=1–3(t–2)=–3t+2.
②当s=–3t+2=0时,t=.
答:此人走完全程所用的时间为小时.
【点睛】
本题考查了一次函数的应用,解题的关键是:(1)根据路程=速度×时间求出a值;(2)①根据路程=1-返回时的速度×时间列出s与t之间的函数解析式;②令s=0求出t值.
22、(1)平均数:260件;中位数:240件;众数:240件(2)不合理,定额为240较为合理
【解析】分析:(1)平均数=加工零件总数÷总人数,中位数是将一组数据按照由小到大(或由大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.本题中应是第7个数.众数又是指一组数据中出现次数最多的数据.240出现6次.
(2)应根据中位数和众数综合考虑.
详解:(1)平均数: ;中位数:240件;众数:240件.
(2)不合理,因为表中数据显示,每月能完成260件的人数一共是4人,还有11人不能达到此定额,尽管260是平均数,但不利于调动多数员工的积极性,因为240既是中位数,又是众数,是大多数人能达到的定额,故定额为240较为合理.
点睛:本题考查了平均数、中位数和众数的知识,在求本题的平均数时,应注意先算出15个人加工的零件总数.为了大多数人能达到的定额,制定标准零件总数时一般应采用中位数或众数.
23、证明见解析.
【解析】如图,过E点作EH∥AB交BD的延长线于H.可证明△ABC≌△EHC(ASA),则由全等三角形的性质得到AB=HE;然后结合已知条件得到DE=HE,所以AB=HE,由等量代换证得AB=DE.
【详解】证明:如图,过E点作EH∥AB交BD的延长线于H,
∵EH∥AB,
∴∠A=∠CEH,∠B=∠H
在△ABC与△EHC中,,
∴△ABC≌△EHC(ASA),
∴AB=HE,
∵∠B+∠CDE=180°,∠HDE+∠CDE=180°.
∴∠HDE=∠B=∠H,
∴DE=HE.
∵AB=HE,
∴AB=DE.
【点睛】
本题考查了全等三角形的判定与性质.在应用全等三角形的判定时,要注意三角形间的公共边和公共角,正确添加适当辅助线构造全等三角形是解题关键.
24、见解析
【分析】根据已知条件,证明三角形全等,可得,由平行的判定,内错角相等,两直线平行即可得.
【详解】在和中
,
,
.
【点睛】
考查了全等三角形的判定和性质以及平行的判定,熟记平行的判定定理是解题的关键.
25、(1)见解析 (2)5
【分析】(1)直接利用关于y轴对称点的性质得出对应点位置进而得出答案;
(2)直接利用△A′B′C′所在矩形面积减去周围三角形的面积进而得出答案.
【详解】解:(1)如图所示,为所作三角形,
点的坐标:(-1,2);
(2)=5.
【点睛】
本题主要考查了轴对称变换,正确得出对应点位置是解题关键.
26、(1)=;(2)①;②
【分析】(1)根据图2中,大正方形的面积的两种求法即可得出结论;
(2)①根据完全平方公式的变形计算即可;
②设,,则,然后完全平方公式的变形计算即可.
【详解】解:(1)图2大正方形的边长为a+b,面积为;也可以看作两个正方形和两个长方形构成,其面积为.
∴这个等式为=
(2)①∵,
∴.
∴.
∵,
∴.
②设,,则.
∵,
∴.
∵,
∴=.
即.
【点睛】
此题考查的是完全平方公式的几何意义和应用,掌握正方形面积的求法和完全平方公式的变形是解决此题的关键.
每人加工件数
540
450
300
240
210
120
人数
1
1
2
6
3
2
相关试卷
这是一份重庆市涪陵区涪陵第十九中学2023年数学八上期末教学质量检测试题【含解析】,共18页。试卷主要包含了下列各组数中,是勾股数的是等内容,欢迎下载使用。
这是一份重庆市涪陵区涪陵第十九中学2023年数学八上期末达标检测试题【含解析】,共19页。试卷主要包含了答题时请按要求用笔,一次函数的图象大致是,无理数2﹣3在,下列各组线段中等内容,欢迎下载使用。
这是一份重庆市涪陵区涪陵第十九中学2023年八年级数学第一学期期末统考模拟试题【含解析】,共20页。试卷主要包含了答题时请按要求用笔,在四个数中,满足不等式 的有等内容,欢迎下载使用。