2024年高考真题和模拟题数学分类汇编(全国通用)专题14 新定义型问题(原卷版)
展开
这是一份2024年高考真题和模拟题数学分类汇编(全国通用)专题14 新定义型问题(原卷版),共13页。试卷主要包含了已知双曲线,点在上,为常数,,设集合等内容,欢迎下载使用。
1.(新高考北京卷)生物丰富度指数 是河流水质的一个评价指标,其中分别表示河流中的生物种类数与生物个体总数.生物丰富度指数d越大,水质越好.如果某河流治理前后的生物种类数没有变化,生物个体总数由变为,生物丰富度指数由提高到,则( )
A.B.
C. D.
2.(新高考上海卷)定义一个集合,集合中的元素是空间内的点集,任取,存在不全为0的实数,使得.已知,则的充分条件是( )
A.B.
C.D.
3.(新高考上海卷)已知函数的定义域为R,定义集合,在使得的所有中,下列成立的是( )
A.存在是偶函数B.存在在处取最大值
C.存在是严格增函数D.存在在处取到极小值
4.(新高考上海卷)无穷等比数列满足首项,记,若对任意正整数集合是闭区间,则的取值范围是 .
5.(新课标全国Ⅰ卷)设m为正整数,数列是公差不为0的等差数列,若从中删去两项和后剩余的项可被平均分为组,且每组的4个数都能构成等差数列,则称数列是可分数列.
(1)写出所有的,,使数列是可分数列;
(2)当时,证明:数列是可分数列;
(3)从中一次任取两个数和,记数列是可分数列的概率为,证明:.
6.(新课标全国Ⅱ卷)已知双曲线,点在上,为常数,.按照如下方式依次构造点,过作斜率为的直线与的左支交于点,令为关于轴的对称点,记的坐标为.
(1)若,求;
(2)证明:数列是公比为的等比数列;
(3)设为的面积,证明:对任意的正整数,.
7.(新高考北京卷)设集合.对于给定有穷数列,及序列,,定义变换:将数列的第项加1,得到数列;将数列的第列加,得到数列…;重复上述操作,得到数列,记为.
(1)给定数列和序列,写出;
(2)是否存在序列,使得为,若存在,写出一个符合条件的;若不存在,请说明理由;
(3)若数列的各项均为正整数,且为偶数,证明:“存在序列,使得为常数列”的充要条件为“”.
8.(新高考上海卷)对于一个函数和一个点,令,若是取到最小值的点,则称是在的“最近点”.
(1)对于,求证:对于点,存在点,使得点是在的“最近点”;
(2)对于,请判断是否存在一个点,它是在的“最近点”,且直线与在点处的切线垂直;
(3)已知在定义域R上存在导函数,且函数 在定义域R上恒正,设点,.若对任意的,存在点同时是在的“最近点”,试判断的单调性.
一、单选题
1.(2024·湖南怀化·二模)给定整数,有个实数元素的集合,定义其相伴数集,如果,则称集合为一个元规范数集.(注:表示数集中的最小数).对于集合,则( )
A.是规范数集,不是规范数集B.是规范数集,是规范数集
C.不是规范数集,是规范数集D.不是规范数集,不是规范数集
2.(2024·四川绵阳·模拟预测)一般地,任意给定一个角,它的终边与单位圆的交点的坐标,无论是横坐标还是纵坐标,都是唯一确定的,所以点的横坐标、纵坐标都是关于角的函数.下面给出这些函数的定义:
①把点的纵坐标叫作的正弦函数,记作,即;
②把点的横坐标叫作的余弦函数,记作,即;
③把点的纵坐标的倒数叫作的余割函数,记作,即;
④把点的横坐标的倒数叫作的正割函数,记作,即.
下列结论错误的是( )
A.
B.
C.函数的定义域为
D.
3.(2024·河北邯郸·二模)对任意两个非零的平面向量和,定义:,.若平面向量满足,且和都在集合中,则( )
A.1B.C.1或D.1或
4.(2024·上海杨浦·二模)平面上的向量、满足:,,.定义该平面上的向量集合.给出如下两个结论:
①对任意,存在该平面的向量,满足
②对任意,存在该平面向量,满足
则下面判断正确的为( )
A.①正确,②错误B.①错误,②正确C.①正确,②正确D.①错误,②错误
5.(2024·甘肃兰州·一模)球面上两点间距离的定义为:经过球面上两点的大圆在这两点间劣弧的长度(大圆就是经过球心的平面截球面所得的圆).设地球的半径为,若甲地位于北纬东经,乙地位于北纬西经,则甲、乙两地的球面距离为( )
A.B.C.D.
二、多选题
6.(2024·安徽芜湖·二模)在平面直角坐标系xOy中,角θ以坐标原点O为顶点,以x轴的非负半轴为始边,其终边经过点,,定义,,则( )
A.B.
C.若,则D.是周期函数
7.(2024·全国·模拟预测)已知函数和实数,,则下列说法正确的是( )
A.定义在上的函数恒有,则当时,函数的图象有对称轴
B.定义在上的函数恒有,则当时,函数具有周期性
C.若,,,则,恒成立
D.若,,,且的4个不同的零点分别为,且,则
8.(2024·浙江绍兴·模拟预测)对于任意的两点,,定义间的折线距离,反折线距离,表示坐标原点. 下列说法正确的是( )
A..
B.若,则.
C.若斜率为,.
D.若存在四个点使得,且,则的取值范围.
三、填空题
9.(2024·湖南长沙·三模)已知函数 ,任取 ,定义集合 ,点 满足 . 设 分别表示集合 中元素的最大值和最小值,记 ,试解答 以下问题:
(1)若函数 ,则 ;
(2)若函数 ,则 的最小正周期为 .
10.(2024·四川成都·模拟预测)定义在封闭的平面区域D内任意两点的距离的最大值称为平面区域D的“直径”.如图,已知锐角三角形的三个顶点A,B,C在半径为1的圆上,角的对边分别为a,b,c,.分别以各边为直径向外作三个半圆,这三个半圆和构成平面区域D,则平面区域D的“直径”的取值范围是 .
11.(2024·广东佛山·二模)近年,我国短板农机装备取得突破,科技和装备支撑稳步增强,现代农业建设扎实推进.农用机械中常见有控制设备周期性开闭的装置.如图所示,单位圆O绕圆心做逆时针匀速圆周运动,角速度大小为,圆上两点A,B始终满足,随着圆O的旋转,A,B两点的位置关系呈现周期性变化.现定义:A,B两点的竖直距离为A,B两点相对于水平面的高度差的绝对值.假设运动开始时刻,即秒时,点A位于圆心正下方:则 秒时,A,B两点的竖直距离第一次为0;A,B两点的竖直距离关于时间t的函数解析式为 .
12.(2024·山东枣庄·模拟预测)设为平面上两点,定义、已知点P为抛物线上一动点,点的最小值为2,则 ;若斜率为的直线l过点Q,点M是直线l上一动点,则的最小值为 .
13.(2024·福建厦门·模拟预测)在n维空间中(,),以单位长度为边长的“立方体”的顶点坐标可表示为n维坐标,其中.则5维“立方体”的顶点个数是 ;定义:在n维空间中两点与的曼哈顿距离为.在5维“立方体”的顶点中任取两个不同的顶点,记随机变量X为所取两点间的曼哈顿距离,则 .
四、解答题
14.(2024·福建泉州·二模)进位制是人们为了计数和运算方便而约定的记数系统,如果约定满二进一,就是二进制:满十进一,就是十进制:满十六进一,就是十六进制.k进制的基数就是k.我们日常生活中最熟悉、最常用的就是十进制.例如,数3721也可以表示为:一般地,如果k是大于1的整数,那么以k为基数的k进制数可以表示为.其中.为了简便,也会把它写成一串数字连写在一起的形式:,如果不加下标就默认是十进制.
(1)令集合,将B中的元素按从大到小的顺序排列,则第100个数为多少?
(2)若,记为整数n的二进制表达式中0的个数,如,求的值.(用数字作答)
(3)十进制中的数999在其他进制中是否也可以表示成一个各位数字之和为27的三位数?如果能,请求出所有的k进制数;如果不能,请说明理由.
15.(2024·湖南长沙·二模)集合论在离散数学中有着非常重要的地位.对于非空集合和,定义和集,用符号表示和集内的元素个数.
(1)已知集合,,,若,求的值;
(2)记集合,,,为中所有元素之和,,求证:;
(3)若与都是由个整数构成的集合,且,证明:若按一定顺序排列,集合与中的元素是两个公差相等的等差数列.
16.(2024·辽宁葫芦岛·二模)设数阵,其中.设,其中,且.定义变换为“对于数阵的每一列,若其中有t或,则将这一列中所有数均保持不变;若其中没有t且没有,则这一列中每个数都乘以”(),表示“将经过变换得到,再将经过变换得到,…,以此类推,最后将经过变换得到.记数阵中四个数的和为.
(1)若,,写出经过变换后得到的数阵,并求的值;
(2)若,,求的所有可能取值的和;
(3)对任意确定的一个数阵,证明:的所有可能取值的和不大于.
17.(2024·浙江·三模)莫比乌斯函数,由德国数学家和天文学家莫比乌斯提出,数学家梅滕斯首先使用作为莫比乌斯函数的记号,其在数论中有着广泛应用.所有大于1的正整数都可以被唯一表示为有限个质数的乘积形式:(为的质因数个数,为质数,,),例如:,对应,,,,,,.现对任意,定义莫比乌斯函数.
(1)求,;
(2)已知,记(为的质因数个数,为质数,,)的所有因数从小到大依次为,,…,.
(ⅰ)证明:;
(ⅱ)求的值(用()表示).
18.(2024·山东济南·三模)高斯二项式定理广泛应用于数学物理交叉领域.设,,记,,并规定.记,并规定.定义
(1)若,求和;
(2)求;
(3)证明:.
19.(2024·湖北黄冈·二模)第二十五届中国国际高新技术成果交易会(简称“高交会”)在深圳闭幕.会展展出了国产全球首架电动垂直起降载人飞碟.观察它的外观造型,我们会被其优美的曲线折服.现代产品外观特别讲究线条感,为此我们需要刻画曲线的弯曲程度.考察如图所示的光滑曲线上的曲线段,其弧长为,当动点从沿曲线段运动到点时,点的切线也随着转动到点的切线,记这两条切线之间的夹角为(它等于的倾斜角与的倾斜角之差).显然,当弧长固定时,夹角越大,曲线的弯曲程度就越大;当夹角固定时,弧长越小则弯曲程度越大,因此可以定义为曲线段的平均曲率;显然当越接近,即越小,就越能精确刻画曲线在点处的弯曲程度,因此定义(若极限存在)为曲线在点处的曲率.(其中,分别表示在点处的一阶、二阶导数)
(1)已知抛物线的焦点到准线的距离为3,则在该抛物线上点处的曲率是多少?
(2)若函数,不等式对于恒成立,求的取值范围;
(3)若动点的切线沿曲线运动至点处的切线,点的切线与轴的交点为.若,,是数列的前项和,证明.
20.(2024·重庆·模拟预测)对于数列,定义,满足,记,称为由数列生成的“函数”.
(1)试写出“函数” ,并求的值;
(2)若“函数” ,求n的最大值;
(3)记函数,其导函数为,证明:“函数” .
21.(2024·福建厦门·三模)帕德近似是法国数学家亨利·帕德发明的用有理多项式近似特定函数的方法,在计算机数学中有着广泛的应用.已知函数在处的阶帕德近似定义为:,且满足:,,,…,.其中,,…,.已知在处的阶帕德近似为.
(1)求实数a,b的值;
(2)设,证明:;
(3)已知是方程的三个不等实根,求实数的取值范围,并证明:.
22.(2024·河北·二模)已知为实数,用表示不超过的最大整数,例如,对于函数,若存在,使得,则称函数是“函数”.
(1)判断函数是否是“函数”;
(2)设函数是定义在上的周期函数,其最小正周期是,若不是“函数”,求的最小值;
(3)若函数是“函数”,求的取值范围.
23.(2024·河北秦皇岛·二模)定义:如果函数和的图象上分别存在点M和N关于x轴对称,则称函数和具有关系.
(1)判断函数和是否具有C关系;
(2)若函数和不具有C关系,求a的取值范围;
(3)若函数和在区间上具有C关系,求m的取值范围.
24.(2024·山东泰安·模拟预测)定义:设和均为定义在上的函数,它们的导函数分别为和,若不等式对任意实数恒成立,则称和为“相伴函数”.
(1)给出两组函数,①和;②和,分别判断这两组函数是否为“相伴函数”;
(2)若是定义在上的可导函数,是偶函数,是奇函数,,问是否存在使得和为“相伴函数”?若存在写出的一个值,若不存在说明理由;
(3),写出“和为相伴函数”的充要条件,证明你的结论.
25.(2024·山东泰安·模拟预测)已知数列是斐波那契数列,其数值为:.这一数列以如下递推的方法定义:.数列对于确定的正整数,若存在正整数使得成立,则称数列为“阶可分拆数列”.
(1)已知数列满足.判断是否对,总存在确定的正整数,使得数列为“阶可分拆数列”,并说明理由.
(2)设数列的前项和为,
(i)若数列为“阶可分拆数列”,求出符合条件的实数的值;
(ii)在(i)问的前提下,若数列满足,,其前项和为.证明:当且时,成立.
26.(2024·山东·模拟预测)设,.如果存在使得,那么就说可被整除(或整除),记做且称是的倍数,是的约数(也可称为除数、因数).不能被整除就记做.由整除的定义,不难得出整除的下面几条性质:①若,,则;②,互质,若,,则;③若,则,其中.
(1)若数列满足,,其前项和为,证明:;
(2)若为奇数,求证:能被整除;
(3)对于整数与,,求证:可整除.
27.(2024·浙江温州·三模)现有张形状相同的卡片,上而分别写有数字,将这张卡片充分混合后,每次随机抽取一张卡片,记录卡片上的数字后放回,现在甲同学随机抽取4次.
(1)若,求抽到的4个数字互不相同的概率;
(2)统计学中,我们常用样本的均值来估计总体的期望.定义为随机变量的阶矩,其中1阶矩就是的期望,利用阶矩进行估计的方法称为矩估计.
(ⅰ)记每次抽到的数字为随机变量,计算随机变量的1阶矩和2阶矩;(参考公式:)
(ⅱ)知甲同学抽到的卡片上的4个数字分别为3,8,9,12,试利用这组样本并结合(ⅰ)中的结果来计算的估计值.(的计算结果通过四舍五入取整数)
28.(2024·湖南长沙·三模)已知椭圆的左、右焦点分别为为上顶点,离心率 为,直线与圆相切.
(1)求椭圆的标准方程;
(2)椭圆方程,平面上有一点. 定义直线方程 是椭圆在点处的极线.
① 若在椭圆上,证明: 椭圆在点处的极线就是过点的切线;
② 若过点分别作椭圆的两条切线和一条割线,切点为,割线交椭圆 于两点,过点分别作椭圆的两条切线,且相交于点. 证明: 三点共线.
29.(2024·江西·二模)在三维空间中,立方体的坐标可用三维坐标表示,其中,而在维空间中,以单位长度为边长的“立方体”的顶点坐标可表示为维坐标,其中.现有如下定义:在维空间中两点间的曼哈顿距离为两点与坐标差的绝对值之和,即为.回答下列问题:
(1)求出维“立方体”的顶点数;
(2)在维“立方体”中任取两个不同顶点,记随机变量为所取两点间的曼哈顿距离.
①求的分布列与期望;
②求的方差.
30.(2024·湖北·模拟预测)龙泉游泳馆为给顾客更好的体验,推出了A和B两个套餐服务,顾客可选择A和B两个套餐之一,并在App平台上推出了优惠券活动,下表是该游泳馆在App平台10天销售优惠券情况.
经计算可得:.
(1)因为优惠券购买火爆,App平台在第10天时系统出现异常,导致当天顾客购买优惠券数量大幅减少,已知销售量y和日期t呈线性关系,现剔除第10天数据,求y关于t的经验回归方程结果中的数值用分数表示;
(2)若购买优惠券的顾客选择A套餐的概率为,选择B套餐的概率为,并且A套餐可以用一张优惠券,B套餐可以用两张优惠券,记App平台累计销售优惠券为n张的概率为,求;
(3)记(2)中所得概率的值构成数列.
①求的最值;
②数列收敛的定义:已知数列,若对于任意给定的正数,总存在正整数,使得当时,,(是一个确定的实数),则称数列收敛于.根据数列收敛的定义证明数列收敛.
参考公式: .日期t
1
2
3
4
5
6
7
8
9
10
销售量千张
1.9
1.98
2.2
2.36
2.43
2.59
2.68
2.76
2.7
0.4
相关试卷
这是一份2024年高考真题和模拟题数学分类汇编(全国通用)专题12 概率统计(原卷版),共14页。试卷主要包含了并部分整理下表等内容,欢迎下载使用。
这是一份2024年高考真题和模拟题数学分类汇编(全国通用)专题07 不等式(原卷版),共5页。试卷主要包含了实数满足等内容,欢迎下载使用。
这是一份2024年高考真题和模拟题数学分类汇编(全国通用)专题06 直线与圆(原卷版),共6页。