人教A版 (2019)选择性必修 第三册7.4 二项分布与超几何分布课前预习课件ppt
展开1. 理解超几何分布概念, 能够判定随机变量是否服从超几何分布;2. 会应用超几何分布列的概率公式计算求解随机事件的概率;3. 能够利用随机变量服从超几何分布的知识解决实际问题, 会求服从超几何分布的随机变量的均值.
问题 已知100件产品中有8件次品,分别采用有放回和不放回的方式随机抽取4件.设抽取的4件产品中次品数为X,求随机变量X的分布列.我们知道,如果采用有放回抽样,则每次抽到次品的概率为0.08,且各次抽样的结果相互独立,此时X服从二项分布,即X~B(4, 0.08) .
思考:如果采用不放回抽样,那么抽取的4件产品中次品数X是否也服从二项分布?如果不服从,那么X的分布列是什么?
采用不放回抽样,虽然每次抽到次品的概率都是0.08,但每次抽取不是同一个试验,而且各次抽取的结果也不独立,不符合n重伯努利试验的特征,因此X不服从二项分布.
计算的具体结果(精确到0.00001)如表7.4-1所示.
一般地,假设一批产品共有N件,其中有M件次品.从N件产品中随机抽取n件(不放回),用X表示抽取的n件产品中的次品数,则X的分布列为
如果随机变量X的分布列具有上式的形式,那么称随机变量X服从超几何分布(hypergemetric distributin).
例4 从50名学生中随机选出5名学生代表,求甲被选中的概率.
例5 一批零件共有30个,其中有3个不合格.随机抽取10个零件进行检测,求至少有1件不合格的概率.
服从超几何分布的随机变量的均值是什么?
例6 一个袋子中有100个大小相同的球,其中有40个黄球、60个白球,从中随机地摸出20个球作为样本.用X表示样本中黄球的个数.(1)分别就有放回摸球和不放回摸球,求X的分布列;(2)分别就有放回摸球和不放回摸球,用样本中黄球的比例估计总体中黄球的比例,求误差不超过0.1的概率.
分析:因为只有两种颜色的球,每次摸球都是一个伯努利试验.摸出20个球,采用有放回摸球,各次试验的结果相互独立,X~B(20,0.4);而采用不放回摸球,各次试验的结果不独立,X服从超几何分布.
(2)利用统计软件可以计算出两个分布列具体的概率值(精确到 0.00001 ),如表7.4-2 所示.
因此,在相同的误差限制下,采用不放回摸球估计的结果更可靠些.
两种摸球方式下,随机变量X分别服从二项分布和超几何分布.虽然这两种分布有相等的均值(都是8),但从两种分布的概率分布图(图7.4-4)看,超几何分布更集中在均值附近.
二项分布和超几何分布都可以描述随机抽取的n件产品中次品数的分布规律,并且二者的均值相同.对于不放回抽样,当n远远小于N时,每抽取一次后,对N的影响很小,此时,超几何分布可以用二项分布近似.
一般地,假设一批产品共有N件,其中有M件次品. 从N件产品中随机抽取n件(不放回),用X表示抽取的n件产品中的次品数,则X的分布列为
若随机变量X服从超几何分布,则
2.超几何分布的均值,
完成教材:第80页,练习第1,2题.
1.一箱24罐的饮料中4罐有奖券,每张奖券奖励饮料一罐,从中任意抽取2罐,求这2罐中有奖券的概率.
解:因为一箱24罐的饮料中4罐有奖券,所以无奖券的有20罐,
2.学校要从12名候选人中选4名同学组成学生会,已知有4名候选人来自甲班.假设每名候选人都有相同的机会被选到,求甲班恰有2名同学被选到的概率.
3.举出两个服从超几何分布的随机变量的例子.
例1:假设某鱼池中仅有鲤鱼和草鱼两种鱼,其中鲤鱼200条,草鱼40条,从鱼池中任取5条鱼,这5条鱼中包含草鱼的个数X服从超几何分布.例2:现有甲、乙两种品牌的电视机共52台,其中甲品牌21台,从52台电视机中选出5台送给福利院,选出的甲品牌电视机台数X服从超几何分布.
1.抛掷一枚骰子,当出现5点或6点时,就说这次试验成功,求在30次试验中成功次数X的均值和方差.
2.若某射手每次射击击中目标的概率为0.9,每次射击的结果相互独立,则在他连续4次的射击中,恰好有一次未击中目标的概率是多大.
3.如图,一个质点在随机外力的作用下,从原点0出发,每隔1s等可能地向左或向右移动一个单位,共移动6次.求下列事件的概率.
(1)质点回到原点;(2)质点位于4的位置.
4.从一副不含大小王的52张扑克牌中任意抽出5张,求至少有2张A牌的概率(精确到0.000 01).
5.某射手每次射击击中目标的概率为0.8,共进行10次射击,求(精确到0.01):(1)恰有8次击中目标的概率;(2)至少有8次击中目标的概率.
6.有一个摸奖游戏,在一个口袋中装有10个红球和20个白球,这些球除颜色外完全相同,一次从中摸出5个球,至少摸到3个红球就中奖.求中奖的概率(精确到0.001).
7.一个车间有3台车床,它们各自独立工作.设同时发生故障的车床数为X,在下列两种情形下分别求X的分布列.(1)假设这3台车床型号相同,它们发生故障的概率都是20%;
7.一个车间有3台车床,它们各自独立工作.设同时发生故障的车床数为X,在下列两种情形下分别求X的分布列.(2)这3台车床中有A型号2台,B型号1台,A型车床发生故障的概率为10%,B型车床发生故障的概率为20%.
8.某药厂研制一种新药,宣称对治疗某种疾病的有效率为90%.随机选择了10个病人,经过使用该药治疗后,治愈的人数不超过6人,你是否怀疑药厂的宣传.
所以概率非常小,因此治愈人数不超过6人是小概率事件,在一次试验中几乎不可能发生,然而现在发生了,从这个角度,就可以怀疑药厂是虚假宣传.
换另一个角度,治愈人数不超过6人是一个随机事件,在一次试验中可能发生,所以从这个角度看,也可以不怀疑药厂的宣传.
对不同的n和p的值,绘制的概率分布图如图 1 所示.
观察图形,类比函数性质的研究,你能发现二项分布的哪些性质?提出你的猜想.
对你发现的二项分布的其他性质,你能给出证明吗?
人教A版 (2019)选择性必修 第三册7.4 二项分布与超几何分布教课课件ppt: 这是一份人教A版 (2019)选择性必修 第三册<a href="/sx/tb_c4000359_t3/?tag_id=26" target="_blank">7.4 二项分布与超几何分布教课课件ppt</a>,共29页。PPT课件主要包含了创设情境揭示课题,阅读精要研讨新知,例题研讨,学习例题的正规表达,学习例题的常规方法,从例题中学会思考,如何看例题,小组互动,探索与发现思考与感悟,归纳小结回顾重点等内容,欢迎下载使用。
高中数学人教A版 (2019)选择性必修 第三册7.4 二项分布与超几何分布教学ppt课件: 这是一份高中数学人教A版 (2019)选择性必修 第三册7.4 二项分布与超几何分布教学ppt课件,共25页。
人教A版 (2019)选择性必修 第三册7.4 二项分布与超几何分布课堂教学课件ppt: 这是一份人教A版 (2019)选择性必修 第三册7.4 二项分布与超几何分布课堂教学课件ppt,共28页。PPT课件主要包含了情境导入,互动交流,新知探究,概念生成,小试牛刀,学习例题的正规表达,例题研讨,典例解析,小组互动,课堂练习等内容,欢迎下载使用。