终身会员
搜索
    上传资料 赚现金
    人教版八年级数学下册重难题型全归纳及技巧提升专项精练专题20.1数据的分析重难点题型10个(原卷版+解析)
    立即下载
    加入资料篮
    人教版八年级数学下册重难题型全归纳及技巧提升专项精练专题20.1数据的分析重难点题型10个(原卷版+解析)01
    人教版八年级数学下册重难题型全归纳及技巧提升专项精练专题20.1数据的分析重难点题型10个(原卷版+解析)02
    人教版八年级数学下册重难题型全归纳及技巧提升专项精练专题20.1数据的分析重难点题型10个(原卷版+解析)03
    还剩53页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    人教版八年级数学下册重难题型全归纳及技巧提升专项精练专题20.1数据的分析重难点题型10个(原卷版+解析)

    展开
    这是一份人教版八年级数学下册重难题型全归纳及技巧提升专项精练专题20.1数据的分析重难点题型10个(原卷版+解析),共56页。

    题型1 算术平均数及相关计算
    【解题技巧】1)算术平均数:一般地,有n个数x1,x2,…,xn,那么=。简称平均数。
    算术平均数反映了这一组数据的集中趋势,表示了这组数据的平均水平。
    注:当任一数据变化时,都会影响算术平均数。
    2)结论:若=;=。
    则: = 1 \* GB3 ①x1±y1,x2±y2,…,xn±yn的平均数为x±y; = 2 \* GB3 ②x1,y1,x2,y2…,xn,yn的平均数为x+y)。
    = 3 \* GB3 ③ax1+b,ax2+b,…,axn+b的平均数为ax+b。
    ∵ax1,ax2,…,axn的平均数为ax; ∴x1+b,x2+b,…,xn+b的平均数为x+b。
    1.(2022·浙江·永嘉县八年级期中)数据3,4,5,6,7的平均数是___________.
    2.(2022·湖南·长沙市八年级期末)一组数据2,1,4,x,6的平均值是4,则x的值为( )
    A.3B.5C.6D.7
    3.(2022·河南新乡·八年级期末),,…,的平均数为m,,,…,的平均数为n,则,,…,的平均数为( )
    A.B.C.D.
    4.(2022·辽宁葫芦岛·八年级期末)将一组数据的每一个数都减去30,所得新的一组数据的平均数是1,则原来那组数据的平均数为( )
    A.31B.30C.1D.29
    5.(2022·河北·邢台市八年级阶段练习)已知一组数据、、、、的平均数是5,则另一组新数组、、、、的平均数是_____.
    6.(2022·重庆九年级阶段练习)有5个正整数,,,,,某数学兴趣小组的同学对5个正整数作规律探索,找出同时满足以下3个条件的数.
    ①,,是三个连续偶数,②,是两个连续奇数(),③.
    该小组成员分别得到一个结论:
    甲:取,5个正整数不满足上述3个条件;
    乙:取,5个正整数满足上述3个条件;
    丙:当满足“是4的倍数”时,5个正整数满足上述3个条件;
    丁:5个正整数满足上述3个条件,则,,的平均数与,的平均数之和是10p(p为正整数);
    以上结论正确的个数有( )个
    A.1B.2C.3D.4
    题型2 加权平均数及相关计算
    【解题技巧】
    加权平均数:一般地,若n个数x1,x2,…,xn的权分别是ω1,ω2,…,ωn,则eq \f(x1ω1+x2ω2+…+xnωn,ω1+ω2+…+ωn)叫做这n个数的加权平均数.前面求算术平均数,是将每个数据认为同等重要,即每个数据的权重都是1。
    注意:计算平均数时注意分辨是算术平均数还是加权平均数,两者计算方法有差异,不能混淆.
    1.(2022·湖南·宁远八年级阶段练习)某次演讲比赛四名选手的成绩统计如下表(单位:分)
    将评委、观众按的比例进行打分,成绩最高的是( )
    A.小李B.小张C.小王D.小周
    2.(2022·陕西·商南八年级期末)西安秦始皇陵兵马俑博物馆拟招聘一名优秀讲解员,小婷的笔试、试讲、面试三轮测成绩分别为分、分、分,综合成绩中笔试占,试讲占,面试占,那么小婷的最后成绩为___________分.
    3.(2022·广东·陆河八年级阶段练习)某商场销售A,B,C,D四种商品,它们的单价依次是50元,30元,20元,10元.某天这四种商品销售数量的百分比如图所示,则这天销售的四种商品的平均单价是__________.
    4.(2022·山东·宁津县育新中学八年级阶段练习)自1996年起,我国确定每年3月份最后一周的星期一,为全国中小学生“安全教育日”.2018年3月26日是第二十三个全国中小学生安全教育日.某中学八年级开展了交通安全为主题的演讲比赛.其中两名参赛选手的各项得分如下表:
    如果规定:演讲内容、演讲技巧、仪表形象按6:3:1计算成绩,那么甲、乙两人的成绩谁更高?( )
    A.甲B.乙C.甲乙一样高D.无法确定
    5.(2022·浙江·余姚市兰江中学八年级期中)浙江某大学部分专业采用“三位一体”的形式进行招生,现有甲、乙两名学生,他们各自的三类成绩(已折算成满分100分)如表所示:
    (1)如果根据三项得分的平均数,那么哪位同学排名靠前?
    (2)“三位一体”根据入围考生志愿,按综合成绩从高分到低分择优录取,综合成绩按“学业水平测试成绩×20%+综合测试成绩×20%+高考成绩×60%”计算形成,那么哪位同学排名靠前?
    6.(2022·浙江金华·八年级期末)学校准备从甲乙两位选手中选择一位,代表学校参加所在地区的汉字听写大赛,总评成绩由“表达能力、阅读理解、综合素质和汉字听写”四部分组成.甲,乙两位选手的成绩如下表,请解答下列问题:
    (1)由表中成绩已算得甲的平均成绩为80.25,请计算乙的平均成绩.
    (2)已知四部分占总评成绩的比例如图所示.①求图中表示“阅读理解”的扇形的圆心角度数;
    ②通过计算甲,乙两名选手的总评成绩,你认为学校派谁参加比赛合适?
    题型3 众数与中位数的相关计算
    【解题技巧】
    1)中位数:将一组数据从小到大(或从大到小)排列,如果数据是奇数个,则处于中间的数为中位数;若数据是偶数个,则中间两个数据的平均数为中位数。注: = 1 \* GB3 ①所有数据需排列(从大到小或从小到大); = 2 \* GB3 ②中位数有可能不是这组数据中的数; = 3 \* GB3 ③中位数反映了中间水平。
    2)众数:一组数据中出现次数最多的数据.
    注: = 1 \* GB3 ①众数不一定唯一; = 2 \* GB3 ②众数反应了一组数据中的趋势量,即数据出现频次最高的量。
    1.(2022·山东·薛城区八年级阶段练习)我区某中学在预防“新冠肺炎”期间,要求学生每日测量体温,九(5)班一名同学连续一周体温情况如表所示:则该名同学这一周体温数据的众数和中位数分别是( )
    A.和36.2B.36.2和C.36.2和36.2D.36.2和
    2.(2022·江苏·无锡市九年级阶段练习)为了调查某小区居民的用水情况,随机抽查了若干户家庭的月用水量,结果如表,则关于这若干户家庭的用水量,下列说法错误的是( )
    A.众数是 B.平均数是 C.调查了户家庭的月用水量 D.中位数是
    3.(2022·浙江·宁波市鄞州区教育局教研室八年级期末)一组数据,,,,的中位数和平均数相等,则的值是________.
    4.(2022·陕西商洛·八年级期末)从小到大排列的一组数据1,2,2,,6,7的中位数为3,则m的值为______.
    5.(2022·山东滨州·八年级期末)从小到大的一组数据-2,1,2,,6,10的中位数为2,则这组数据的众数是___________.
    6.(2022·江苏·九年级专题练习)一组数据﹣1,3,1,2,b的唯一众数为﹣1,则这组数据的中位数为__.
    题型4 平均数、众数、中位数的综合运算
    1.(2022·黑龙江牡丹江·八年级期末)一组数据为1,3,2,2,a,b,c,唯一众数是3,平均数是2,则这组数据的中位数是_______.
    2.(2022·广东湛江·八年级期末)两组数据:3,a,2b,5与a,6,b的平均数都是6,若将这两组数据合并为一组数据,则这组新数据的众数为________.
    3.(2022·江苏·九年级专题练习)五个正整数,中位数是,众数是,则这五个正整数的平均数是______ .
    4.(2022·湖北黄石·八年级期末)一组2,2x,y,12中,唯一的众数是12,平均数是10,这数据的中位数是_______.
    5.(2022·福建·厦门八年级期末)已知一组数据由五个正整数组成,它的中位数和众数都是2,则这五个数的和的最小值是( )
    A.7B.8C.9D.10
    6.(2022·河北保定·九年级期末)某部门为了解工人的生产能力情况,进行了抽样调查,随机抽取了20名工人每天每人加工零件的个数,整理得到如下统计表和条形统计图.
    根据以上信息,解答下列问题:(1)分别求,的值;(2)为调动积极性,该部门根据工人每天加工零件的个数制定了奖励标准,凡达到或超过这个标准的工人将获得奖励.如果想让60%左右的工人能获奖,应根据______来确定奖励标准比较合适(填“平均数”、“众数”或“中位数”);(3)该部门规定:每天加工零件的个数达到或超过21个的工人为生产能手,若该部门有300名工人,试估计该部门生产能手的人数.
    题型5 方差与标准差的相关计算
    【解题技巧】
    1)极差:一组数据中最大值与最小值的差
    2)方差: 在一组数据中,各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差。通常用“”表示,即
    3)标准差:方差的算数平方根叫做这组数据的标准差,用“s”表示,即
    结论:若数据a1,a2,……an的方差是s2,则数据a1+b,a2+b,……an+b的方差仍然是s2,数据ka1+b,ka2+b,……kan+b的方差是k2s2.
    1.(2022·安徽·合肥二模)某班抽取名同学参加体能测试,成绩如下:,,,,,下列表述错误的是( )
    A.平均数是B.极差是C.中位数是D.标准差是
    2.(2022·浙江·宁波市镇海蛟川书院八年级期中)一组数据的方差计算公式为,则这组数据的方差是______.
    3.(2022·福建·福州日升中学八年级期中)如果有一组数据-2,0,1,3,的极差是6,那么的值是_________.
    4.(2022·福建·厦门实验中学二模)设数据x1,x2,x3,…,xn的平均数为x,方差S2=0,则下列式子一定正确的是( )
    A.x=0B.x1+x2+x3+…+xn=0C.x1=x2=x3=…=xn=0D.x1=x2=x3=…=xn=x
    5.(2022·山东烟台·八年级期中)若一组数据13,14,15,16,x的方差比另一组数3,4,5,6,7的方差大,则x的值可能是( )
    A.12B.16C.17D.18
    6.(2022·江苏·盐城九年级阶段练习)省射击队要从甲、乙两名射击运动员中挑选一人参加全国比赛,在最近的4次选拔赛中,甲的射击的成绩如下(单位:环):7、8、9、8.
    (1)求甲运动员这4次选拔赛成绩的平均数;(2)求甲运动员这4次选拔赛成绩的方差.
    题型6 统计量的选择--众数
    1.(2022·河北秦皇岛·八年级期末)某幼儿园对全体小朋友爱吃哪种粽子做调查,以决定最终买哪种口味的粽子,下面的调查数据最值得关注的是( )
    A.平均数B.中位数C.众数D.方差
    2.(2022·浙江衢州·八年级期末)一家鞋店对上周某一品牌的销售情况统计如下表:
    该店决定本周进鞋时多进些尺码为23.5厘米的鞋,影响鞋店决策的统计量是( ).
    A.平均数B.中位数C.众数D.方差
    3.(2022·浙江杭州·八年级阶段练习)“冰墩墩”热潮持续不断,店家为合理进行资金分配,对上月各类型的爆款数量进行数据统计分析,从而确定各款商品批发数量,此时店家应重点参考( )
    A.众数B.平均数C.中位数D.方差
    4.(2022·安徽合肥·八年级期末)某品牌运动鞋专卖店在销售过程中,对近期不同尺码的鞋子销售情况进行了统计,若决定下次进货时,增加一些41码的鞋子,影响该决策的统计量是( ).
    A.平均数B.中位数C.众数D.方差
    5.(2022·河北廊坊·八年级期末)某服装店试销一款女式防晒服,试销期间对不同颜色的防晒服的销售情况做了统计.如果服装店经理最关心的是哪种颜色的防晒服最畅销,那么对经理最有意义的统计量是( )
    A.平均数B.众数C.中位数D.方差
    6.(2022·浙江·八年级期中)一家鞋店在一段时间内销售了某种女鞋30双,各种尺码的鞋销售量如下表:
    如果你是鞋店的经理,你会最关注哪个统计量( )
    A.平均数B.中位数C.众数D.方差
    题型7 统计量的选择--中位数
    1.(2022·河北·石家庄九年级阶段练习)在一次15人参加的歌唱比赛中,预赛成绩各不同要取前8名参加决赛杨超越已经知道自己的成绩,她想知道自己是否能进入决赛,只需要再知道这15名选手成绩的( )
    A.平均数B.众数C.方差D.中位数
    2.(2022·河南洛阳·八年级期末)在一次数学测试中,小明的成绩是75分,超过本班半数同学的成绩,分析得出这个结论所用的统计量是( )
    A.平均数B.众数C.中位数D.方差
    3.(2022·福建·莆田八中八年级期末)为了方便市民出行,打造健康莆田,莆田市政府推出“Yu Bike微笑自行车”的社会公共服务项目.微笑自行车运营管理公司经过调查获得关于微笑自行车租用骑行时间的数据,并由此制定了收费标准:若每次租用单车骑行a小时以内,则不收取费用;若超过a小时后,超过部分每小时收费1元.为保证不少于50%的骑行是免费的,自行车运营管理公司应从此次调查得到的骑行时间的数据中,选取下列哪个统计了作为a的值( )
    A.平均数B.众数C.中位数D.方差
    4.(2022·吉林长春·八年级期末)某校11名学生演讲赛的成绩各不相同,若某选手想知道自己能否进入前5名,则他不仅要知道自己的成绩,还应知道这11名学生成绩的( )
    A.平均数B.众数C.方差D.中位数
    4.(2022·河南驻马店·八年级期末)杨靖宇将军纪念馆“红色小讲解员”演讲比赛中,7位评委分别给出某位选手的原始评分.评定该选手成绩时,从7个原始评分中去掉一个最高分、一个最低分,得到5个有效评分,5个有效评分与7个原始评分相比.这两组数据一定不变的是( )
    A.中位数B.众数C.平均数D.以上都不对
    5.(2022·贵州黔东南·八年级期末)某装配车间为了较合理地确定每名工人标准目产量,车间管理者从过去的工作日中随机地抽查了该车间15名工人在某一天中各自装配机器的数量(单位:台),具体如下:6,7,7,8,8,8,8,9,10,10,11,13,15,15,16.根据抽样的数据,车间管理者将每名工人标准日产量定为9台,其依据是统计数据中的( )
    A.最大数据B.众数C.中位数D.平均数
    6.(2022·河南洛阳·九年级)某停车场规定,停车时间在小时以内收费元,超过小时的,每小时另收元,若要让在该停车场停车的的人只花元钱,应取( )
    A.平均数B.众数C.中位数D.方差
    题型8 统计量的选择--方差
    【解题技巧】
    极差反映了一组数据中极端值的变化。当极差越小,则数据越稳定;极差越大,则数据极端数值波动越大。
    方差(标准差)反映整体数据波动情况;方差(标准差)越小,整体数据越稳定。
    1.(2022·浙江·永嘉县八年级期中)如表记录了甲、乙、丙、丁四名学生近10次英语词汇成绩的数据信息,要选择一名成绩好又发挥稳定的学生参加年级英语词汇比赛,应该选择的是( )
    A.甲B.乙C.丙D.丁
    2.(2022·福建·福州九年级阶段练习)八年级一班的平均年龄是12.5岁,方差是40,过一年后该班学生到九年级时,下列说法正确的是( )
    A.平均年龄不变B.年龄的方差不变C.年龄的众数不变D.年龄的中位数不变
    3.(2021·浙江湖州市·九年级一模)已知某运动队的甲、乙、丙、丁四名射击运动员平时训练的平均成绩(单位:环)以及方差(单位:环)如下表,现要选一名成绩优秀且稳定的队员参加某项比赛,则应选( )
    A.甲B.乙C.丙D.丁
    4.(2021·浙江宁波市·九年级二模)一组数据1,2,3,4,5的方差是a,若增加一个数据9,则增加后6个数据的方差为b,则a与b的大小关系是( )
    A.a < bB.a = bC.a > bD.不能确定
    5.(2022·重庆铜梁·八年级期末)在平均数、中位数、众数、方差等几个统计量中,最能刻画数据波动(离散)程度的量是______.
    6.(2022·北京·首都师范大学附属中学九年级阶段练习)电影公司随机收集了2000部电影的有关数据,经分类整理得到下表:
    好评率是指一类电影中获得好评的部数与该类电影的部数的比值.
    电影公司为增加投资回报,拟改变投资策略,这将导致不同类型电影的好评率发生变化.假设表格中只有两类电影的好评率数据发生变化,那么第____类电影的好评率增加0.1,第____类电影的好评率减少0.1,可以使获得好评的电影总部数与样本中的电影总部数的比值达到最大.
    题型9平均数、中位数、众数、方差相关判断
    【解题技巧】平均数的优点:平均数的计算过程中用到了一组数据中的每一个数,因此比中位数和众数更灵敏,反映了更多数据的信息.
    平均数的缺点:计算较麻烦,而且容易受到极端值的影响.
    中位数的优点:计算简单,不容易受到极端值的影响,确定了中位数之后,可以知道小于中位数的数值和大于中位数的数值在这组数据中各占一半.
    中位数的缺点:除了中间的值以外,不能反映其他数据的信息.
    众数的优点:众数很容易从直方图中获得,它可以清楚地告诉我们:在一组数据中哪个或哪些数值出现的次数最多.
    众数的缺点:不能反映众数比其他数出现的次数多多少,而且也丢失了很多其他数据的信息.
    1.(2022·山东·八年级单元测试)某校八年级甲、乙两班举行电脑汉字输入比赛,两个班参加比赛的学生每分钟输入汉字的个数经统计和计算后结果如下表:
    有一位同学根据上面表格得出如下结论:①甲、乙两班学生的平均水平相同;
    ②乙班优秀人数比甲班优秀人数多(每分钟输入汉字达150个以上为优秀);
    ③甲班学生比赛成绩的波动比乙班学生比赛成绩的波动大.上述结论正确的是___________(填序号).
    2.(2022·成都市·八年级课时练习)某次跳绳比赛中,统计甲、乙两班学生每分钟跳绳的成绩(单位:次)情况如下表:
    下列三个命题:(1)甲班平均成绩低于乙班平均成绩;(2)甲班成绩的波动比乙班成绩的波动大;
    (3)甲班成绩优秀人数少于乙班成绩优秀人数.(跳绳次数次为优秀)
    其中正确的命题是___________.(只填序号)
    3.(2022·黑龙江·五常市八年级期末)某次体育活动中,统计甲、乙两班学生每分钟跳绳的成绩(单位:次)情况如下:
    请你从下面三个结论中,选出所有正确的命题
    ①甲班学生的平均成绩高于乙班学生的平均成绩;②甲班学生的成绩波动比乙班学生的成绩波动大;
    ③甲班学生的成绩优秀人数不会多于乙班学生的成绩优秀人数(跳绳次数≥150次为优秀)
    以上三个结论中正确的是_______(把所有正确的结论的序号填在横线上)
    4.(2022·北京·九年级专题练习)某景区为了解游客人数的变化规律,提高旅游服务质量,收集并整理了某月天)接待游客人数(单位:万人)的数据,绘制了下面的统计图和统计表.
    根据以上信息,以下四个判断中,正确的是____(填写所有正确结论的序号).
    ①该景区这个月游玩环境评价为“拥挤或严重拥挤”的天数仅有4天;②该景区这个月每日接待游客人数的中位数在万人之间;③该景区这个月平均每日接待游客人数低于5万人;④这个月1日至5日的五天中,如果某人曾经随机选择其中的两天到该景区游玩,那么他“这两天游玩环境评价均为好”的可能性为.
    5.(2022·江苏·苏州二模)牛年伊始,中国电影行业迎来了开门红.春节档期全国总观影人次超过1.6亿,总票房超过80亿元.以下是甲、乙两部春节档影片上映后的票房信息.
    a.两部影片上映第一周单日票房统计图.
    b.两部影片分时段累计票房如下
    (以上数据来源于中国电影数据信息网).
    根据以上信息,回答下列问题:(1)2月12日-18日的一周时间内,影片乙单日票房的中位数为__________;
    (2)对于甲、乙两部影片上映第一周的单日票房,下列说法中所有正确结论的序号是__________;
    ①甲的单日票房逐日增加;②甲单日票房的方差小于乙单日票房的方差;
    ③在第一周的单日票房统计中,甲超过乙的差值于2月17日达到最大.
    (3)截止到2月21日,影片甲上映后的总票房超过了影片乙,据此估计,2月19日-21日三天内影片甲的累计票房应超过_________亿元.
    6.(2022·北京·九年级专题练习)某公司销售一批新上市的产品,公司收集了这个产品15天的日销售额的数据,制作了如下的统计图.
    关于这个产品销售情况有以下说法:
    ①第1天到第5天的日销售额的平均值低于第6天到第10天的日销售额的平均值;
    ②第6天到第10天日销售额的方差小于第11天到第15天日销售额的方差;
    ③这15天日销售额的平均值一定超过2万元.所有正确结论的序号是________.
    题型10 统计综合题
    1.(2022·重庆南开中学八年级期末)2022年,教育部制定了独立的《义务教育劳动课程标准》,其中规定:以劳动项目为载体,以孩子经历体验劳动过程为基本要求,培养学生的核心劳动素养.某校分别从该校七、八年级学生中各随机调查了100名学生,统计他们上周的劳动时间,劳动时间记为x分钟,将所得数据分为5个组别(A组:;B组:;C组:;D组:;E组:),将数据进行分析,得到如下统计:
    ①八年级B组学生上周劳动时间从高到低排列,排在最后的10个数据分别是:82,82,81,81,81,81,80,80,80,80.
    ②八年级100名学生上周劳动时间频数分布统计表:
    ③七、八年级各100名学生上周劳动时间的平均数、中位数、众数如下表:
    ④七年级100名学生上周劳动时间分布扇形统计图
    请你根据以上信息,回答下列问题:(1)______,______,______;
    (2)根据以上数据分析,你认为七、八年级哪个年级学生上周劳动情况更好,请说明理由;(写出一条即可)
    (3)已知七年级有800名学生,八年级有600名学生,请估计两个年级上周劳动时间在80分钟以上(含80分钟)的学生一共有多少人?
    2.(2022·福建泉州·八年级期末)2022年春季,安溪县初中数学学科教学联盟组编写“县本小单元分层作业”测试卷,现将某试点校八年级甲、乙两位选做“强基”层次的同学的10次测试成绩,绘制如图统计图.
    (1)根据图中提供的数据列出如表统计表:
    则a= ,b= .
    (2)现在要从这两位同学中选派一位参加数学素养竞赛,根据以上信息你认为应该选派谁?请简要说明理由.
    3.(2021·广西来宾·中考真题)某水果公司以元/的成本价新进箱荔枝,每箱质量,在出售荔枝前,需要去掉损坏的荔枝,现随机抽取箱,去掉损坏荔枝后称得每箱的质量(单位:)如下:


    (1)直接写出上述表格中,,的值;
    (2)平均数、众数、中位数都能反映这组数据的集中趋势,请根据以上样本数据分析的结果,任意选择其中一个统计量,估算这箱荔枝共损坏了多少千克?
    (3)根据(2)中的结果,求该公司销售这批荔枝每千克定为多少元才不亏本?(结果保留一位小数)
    4.(2022·北京市九年级开学考试)为进一步增强中小学生“知危险会避险”的意识,某校初三年级开展了系列交通安全知识竞赛,从中随机抽取30名学生两次知识竞赛的成绩(百分制),并对数据(成绩)进行收集、整理、描述和分析.下面给出了部分信息.
    a.这30名学生第一次竞赛成绩和第二次竞赛成绩得分情况统计图:
    b.下表是这30名学生两次知识竞赛的获奖情况相关统计:
    (规定:分数90,获卓越奖;85分数<90,获优秀奖;分数<85,获参与奖)
    c.第二次竞赛获卓越奖的学生成绩如下:
    90 90 91 91 91 91 92 93 93 94 94 94 95 95 96 98
    d. 两次竞赛成绩样本数据的平均数、中位数、众数如下表:
    根据以上信息,回答下列问题:
    (1)小松同学第一次竞赛成绩是89分,第二次竞赛成绩是91分,在图中用“○”圈出代表小松同学的点;
    (2)直接写出m,n的值;(3)可以推断出第 次竞赛中初三年级全体学生的成绩水平较高,理由是 .
    5.(2022·重庆市开州区九年级阶段练习)2021年,全世界自然灾害形势严峻,洪水、地震等不仅给人们的财产带来巨大损失,更是威胁着人们的生命安全.保护生态环境即是保护民生,功在当代,利在千秋;做好综合环境治理,协调人与自然的关系,以求人和自然和谐相处迫在眉急.近日,某校组织了一场关于防自然灾害的知识讲座,并在讲座后进行了满分为100分的“防自然灾害知识测评”,为了了解学生的测评情况,该校在七、八年级中分别抽取了50名学生的分数进行整理分析,已知分数x均为整数,且分为A,B,C,D,E五个等级,分别是A:;:;:;:;:.并给出了部分信息:
    【一】八年级D等级的学生人数占八年级抽取人数的20% ;
    七年级C等级中最低的10个分数分别为:70,70,72,73,73,73,74,74,75,75;
    【二】两个年级学生防自然灾害知识测评分数统计图:
    【三】两个年级学生防自然灾害知识测评分数样本数据的平均数、中位数、众数如下:
    (1)填空:a = ,m = ,补全条形统计图;
    (2)根据以上数据,你认为在此次测评中,哪一个年级的学生对防自然灾害知识掌握较好?请说明理由(说明一条即可).
    (3)若分数不低于90分表示该生对防自然灾害知识测评等级为优秀,且该校七年级有1000人,八年级有1200人,请估计该校七、八年级所有学生中,对防自然灾害知识测评等级为优秀的学生共有多少人?
    6.(2022·江苏丹阳·初三二模)某校需要选出一名同学去参加市“生活中的数学说题”比赛,现有名候选人参加该校举办的模拟说题比赛,挑选出成绩最高者参加说题比赛.已知名候选人模拟说题比赛成绩情况如表所示.
    某校名候选人模拟说题比赛成绩情况
    名候选人模拟说题比赛)成绩的中位数是
    由于两名候选人成绩并列第一;所以学校决定根据两人平时成绩、任课老师打分、模拟说题比赛成绩按的比例最后确定成绩,最终谁将参加说题比赛.已知两名候选人平时成绩、任课老师打分情况如表所示.请你通过计算说明最终谁将参加说题比赛?
    项目
    成绩
    小李
    小张
    小王
    小周
    评委
    90
    94
    85
    92
    观众
    95
    88
    94
    94
    项目
    演讲内容
    演讲技巧
    仪表形象

    95
    90
    85

    90
    95
    90
    学生
    学业水平测试成绩
    综合测试成绩
    高考成绩

    85
    89
    81

    88
    81
    83
    选手
    表达能力
    阅读理解
    综合素质
    汉字听写

    85
    78
    85
    73

    73
    80
    82
    83
    日期
    星期一
    星期二
    星期三
    星期四
    星期五
    星期六
    星期天
    体温(℃)
    36.2
    36.2
    36.2
    月用水量/吨
    户数/户
    统计量
    平均数
    众数
    中位数
    数值
    19.2
    尺码(厘米)
    22.5
    23
    23.5
    24
    24.5
    销售量(双)
    2
    5
    11
    7
    3
    尺码
    39
    40
    41
    42
    43
    平均每天销售数量/双
    16
    16
    25
    24
    20
    尺码/厘米
    22
    22.5
    23
    23.5
    24
    24.5
    25
    销售量/双
    1
    2
    5
    11
    7
    3
    1




    平均数(分)
    90
    93
    93
    92
    方差()
    1.5
    8.5
    1.5
    5.5




    9.0
    9.0
    9.5
    9.5
    0.5
    2.2
    1.7
    0.5
    电影类型
    第一类
    第二类
    第三类
    第四类
    第五类
    第六类
    电影部数
    140
    50
    300
    200
    800
    510
    好评率
    0.4
    0.2
    0.15
    0.25
    0.2
    0.1
    班级
    参加人数
    平均字数
    中位数
    方差

    55
    135
    149
    191

    55
    135
    151
    110
    班级
    参加人数
    平均次数
    中位数
    方差

    45
    135
    149
    180

    45
    135
    151
    130
    班级
    参加人数
    平均成绩(次)
    中位数(次)
    方差
    甲班
    55
    135
    149
    190
    乙班
    55
    135
    151
    110
    每日接待游客人数(单位:万人)
    游玩环境评价

    一般
    拥挤
    严重拥挤
    上映影片
    2月12日-18日累计票房(亿元)
    2月19-21日累计票房(亿元)

    31.56

    37.22
    2.95
    分组
    A
    B
    C
    D
    E
    频数
    14
    b
    27
    13
    6
    年级
    平均数
    中位数
    众数
    七年级
    81.3
    79.5
    82
    八年级
    81.3
    c
    83
    平均成绩(分)
    众数(分)

    80
    b

    a
    90
    整理数据:
    分析数据:
    质量()
    平均数
    众数
    中位数
    数量(箱)
    参与奖
    优秀奖
    卓越奖
    第一次竞赛
    人数
    10
    10
    10
    平均分
    82
    87
    95
    第二次竞赛
    人数
    2
    12
    16
    平均分
    84
    87
    93
    平均数
    中位数
    众数
    第一次竞赛
    m
    87.5
    88
    第二次竞赛
    90
    n
    91
    平均数
    中位数
    众数
    七年级
    76
    a
    72
    八年级
    76
    75
    73
    候选人
    模拟说题比赛成绩
    83
    75
    90
    85
    90
    平时成绩
    95
    85
    任课老师打分
    80
    90
    专题20.1 数据的分析 重难点题型10个
    题型1 算术平均数及相关计算
    【解题技巧】1)算术平均数:一般地,有n个数x1,x2,…,xn,那么=。简称平均数。
    算术平均数反映了这一组数据的集中趋势,表示了这组数据的平均水平。
    注:当任一数据变化时,都会影响算术平均数。
    2)结论:若=;=。
    则: = 1 \* GB3 ①x1±y1,x2±y2,…,xn±yn的平均数为x±y; = 2 \* GB3 ②x1,y1,x2,y2…,xn,yn的平均数为x+y)。
    = 3 \* GB3 ③ax1+b,ax2+b,…,axn+b的平均数为ax+b。
    ∵ax1,ax2,…,axn的平均数为ax; ∴x1+b,x2+b,…,xn+b的平均数为x+b。
    1.(2022·浙江·永嘉县八年级期中)数据3,4,5,6,7的平均数是___________.
    【答案】5
    【分析】根据平均数的的计算公式列出算式,进行计算即可.
    【详解】解:这组数据的平均数=(3+4+5+6+7) ÷5=5,
    故答案是:5.
    【点睛】主要考查了平均数,用到的知识点是平均数的计算公式,熟记算术平均数公式是解题的关键.
    2.(2022·湖南·长沙市八年级期末)一组数据2,1,4,x,6的平均值是4,则x的值为( )
    A.3B.5C.6D.7
    【答案】D
    【分析】根据平均数的定义,即可求解.
    【详解】解:∵一组数据2,1,4,x,6的平均值是4,
    ∴,解得:.故选:D
    【点睛】本题主要考查了根据平均数求未知量,熟练掌握平均数等于一组数据的总和除以数据的个数是解题的关键.
    3.(2022·河南新乡·八年级期末),,…,的平均数为m,,,…,的平均数为n,则,,…,的平均数为( )
    A.B.C.D.
    【答案】D
    【分析】利用平均数的定义直接求解.平均数:是指一组数据中所有数据之和再除以数据的个数.
    【详解】解:∵x1,x2,…,x20的平均数为m,x21,x22,…,x66的平均数为n,
    ∴x1,x2,…,x20的和为20m,x21,x22,…,x66的和为46n,,
    ∴x1,x2,…,x66的平均数为.故选D.
    【点睛】本题考查了求一组数据的平均数,掌握平均数的定义是解题的关键.
    4.(2022·辽宁葫芦岛·八年级期末)将一组数据的每一个数都减去30,所得新的一组数据的平均数是1,则原来那组数据的平均数为( )
    A.31B.30C.1D.29
    【答案】A
    【分析】设这组数据的平均数为=a,根据每个数都减去30的平均数为, ,求得a=31.
    【详解】设这组数据的平均数为=a,
    每个数都减去30,其平均数为,
    =a-=a-30=1,解得a=31.故选A.
    【点睛】本题主要考查了平均数,解决问题的关键是熟练掌握平均数的定义和计算方法.
    5.(2022·河北·邢台市八年级阶段练习)已知一组数据、、、、的平均数是5,则另一组新数组、、、、的平均数是_____.
    【答案】8
    【分析】根据原数据的平均数为5,计算所有原数据的总和为25,即可求出新数据的平均数.
    【详解】、、、、的平均数是5,,
    新数据的平均数为:

    故答案为:8.
    【点睛】本题考查了平均数,解题关键是熟记平均数公式:平均数=所有数的总和÷数的个数.
    6.(2022·重庆九年级阶段练习)有5个正整数,,,,,某数学兴趣小组的同学对5个正整数作规律探索,找出同时满足以下3个条件的数.
    ①,,是三个连续偶数,②,是两个连续奇数(),③.
    该小组成员分别得到一个结论:
    甲:取,5个正整数不满足上述3个条件;
    乙:取,5个正整数满足上述3个条件;
    丙:当满足“是4的倍数”时,5个正整数满足上述3个条件;
    丁:5个正整数满足上述3个条件,则,,的平均数与,的平均数之和是10p(p为正整数);
    以上结论正确的个数有( )个
    A.1B.2C.3D.4
    【答案】C
    【分析】根据每个结论,分别利用题中的3个条件,表示出,,,,,5个数,通过各自的特点与要求进行求解.
    【详解】解:甲:若,由条件①可得,,,
    由条件②可得,,由条件③可得,,解得,
    而为奇数,不符合条件,故甲结论正确;
    乙:若,由条件①可得,,,
    由条件②可得,,由条件③可得,,解得,
    为奇数,符合题意,故乙结论正确;
    丙:若是4的倍数,设是正整数),
    条件①可得,,,条件②可得,,
    由条件③可得,,解得,
    可知为奇数,符合题意,故丙结论正确;
    丁:设是正整数),条件①可得,,,
    条件②可得,,,是奇数,
    条件③可得,,得,,
    ,,的平均数为,
    ,的平均数为,
    ,,的平均数与,的平均数之和可表示为,
    是正整数,是5的倍数,但不是10的倍数,
    故丁结论错误.故选:C.
    【点睛】本题考查列代数式、奇偶数的定义、解一元一次方程,解题的关键是分别表示出5个符合结论和题干的数,然后利用5个数的特点进行求解.
    题型2 加权平均数及相关计算
    【解题技巧】
    加权平均数:一般地,若n个数x1,x2,…,xn的权分别是ω1,ω2,…,ωn,则eq \f(x1ω1+x2ω2+…+xnωn,ω1+ω2+…+ωn)叫做这n个数的加权平均数.前面求算术平均数,是将每个数据认为同等重要,即每个数据的权重都是1。
    注意:计算平均数时注意分辨是算术平均数还是加权平均数,两者计算方法有差异,不能混淆.
    1.(2022·湖南·宁远八年级阶段练习)某次演讲比赛四名选手的成绩统计如下表(单位:分)
    将评委、观众按的比例进行打分,成绩最高的是( )
    A.小李B.小张C.小王D.小周
    【答案】D
    【分析】分别计算四名候选人的加权平均数,然后做出判断即可.
    【详解】解:小李的成绩:;小张的成绩:;
    小王的成绩:;小周的成绩:;
    综上所述,小周得分最高,故选:D.
    【点睛】本题考查加权平均数的含义与求法的实际应用,解题的关键是根据题意熟练运用加权平均数的公式进行计算.
    2.(2022·陕西·商南八年级期末)西安秦始皇陵兵马俑博物馆拟招聘一名优秀讲解员,小婷的笔试、试讲、面试三轮测成绩分别为分、分、分,综合成绩中笔试占,试讲占,面试占,那么小婷的最后成绩为___________分.
    【答案】##
    【分析】由小婷的笔试、试讲、面试三轮测试成绩分别为分、分、分,再分别乘以各自的权重,再求和即可得到答案.
    【详解】解:小婷的最后得分为:(分), 故答案为:.
    【点睛】本题主要考查加权平均数,解题的关键是掌握加权平均数的定义.
    3.(2022·广东·陆河八年级阶段练习)某商场销售A,B,C,D四种商品,它们的单价依次是50元,30元,20元,10元.某天这四种商品销售数量的百分比如图所示,则这天销售的四种商品的平均单价是__________.
    【答案】22.5元
    【分析】根据加权平均数定义即可求出这天销售的四种商品的平均单价.
    【详解】解:这天销售的四种商品的平均单价是:
    50×10%+30×15%+20×55%+10×20%=22.5(元),故答案为:22.5元
    【点睛】本题考查了扇形统计图及加权平均数,解决本题的关键是掌握加权平均数的定义.
    4.(2022·山东·宁津县育新中学八年级阶段练习)自1996年起,我国确定每年3月份最后一周的星期一,为全国中小学生“安全教育日”.2018年3月26日是第二十三个全国中小学生安全教育日.某中学八年级开展了交通安全为主题的演讲比赛.其中两名参赛选手的各项得分如下表:
    如果规定:演讲内容、演讲技巧、仪表形象按6:3:1计算成绩,那么甲、乙两人的成绩谁更高?( )
    A.甲B.乙C.甲乙一样高D.无法确定
    【答案】A
    【分析】根据加权平均数的定义列式计算可得.
    【详解】解:甲的得分为(分),乙的得分为(分),
    ∵92.5>91.5, ∴甲的成绩更高.故选:A
    【点睛】本题考查了加权平均数,熟练掌握加权平均数的求法是解本题的关键.
    5.(2022·浙江·余姚市兰江中学八年级期中)浙江某大学部分专业采用“三位一体”的形式进行招生,现有甲、乙两名学生,他们各自的三类成绩(已折算成满分100分)如表所示:
    (1)如果根据三项得分的平均数,那么哪位同学排名靠前?
    (2)“三位一体”根据入围考生志愿,按综合成绩从高分到低分择优录取,综合成绩按“学业水平测试成绩×20%+综合测试成绩×20%+高考成绩×60%”计算形成,那么哪位同学排名靠前?
    【答案】(1)甲同学排名靠前(2)乙同学排名靠前
    【分析】(1)利用平均数的公式即可直接求解,即可判断;
    (2)利用加权平均数公式求解,即可判断.
    (1)解:甲的平均数为分,乙的平均数为分,
    ∵85>84,∴根据三项得分的平均数,甲同学排名靠前;
    (2)解:甲同学的综合成绩为分,
    乙同学的综合成绩为分,
    ∵83.6>83.4,∴乙同学排名靠前.
    【点睛】本题考查了算术平均数和加权平均数的计算.熟练掌握算术平均数和加权平均数的计算方法是解题的关键.
    6.(2022·浙江金华·八年级期末)学校准备从甲乙两位选手中选择一位,代表学校参加所在地区的汉字听写大赛,总评成绩由“表达能力、阅读理解、综合素质和汉字听写”四部分组成.甲,乙两位选手的成绩如下表,请解答下列问题:
    (1)由表中成绩已算得甲的平均成绩为80.25,请计算乙的平均成绩.
    (2)已知四部分占总评成绩的比例如图所示.①求图中表示“阅读理解”的扇形的圆心角度数;
    ②通过计算甲,乙两名选手的总评成绩,你认为学校派谁参加比赛合适?
    【答案】(1)79.5(2)①;②学校派乙参加比赛合适
    【分析】(1)根据平均数的定义求解即可;
    (2)①用360度乘以阅读理解的占比即可得到答案;②分别求出甲、乙两人的总成绩即可得到答案.
    (1)解:由题意得,乙的平均成绩为;
    (2)解:①由题意得:图中表示“阅读理解”的扇形的圆心角度数为
    ②甲的总成绩为:,
    乙的总成绩为:,
    ∵80.4>79.5,∴学校派乙参加比赛合适.
    【点睛】本题主要考查了求平均数,求加权平均数,求扇形圆心角度数,利用平均数做决策等等,正确理解题意是解题的关键.
    题型3 众数与中位数的相关计算
    【解题技巧】
    1)中位数:将一组数据从小到大(或从大到小)排列,如果数据是奇数个,则处于中间的数为中位数;若数据是偶数个,则中间两个数据的平均数为中位数。注: = 1 \* GB3 ①所有数据需排列(从大到小或从小到大); = 2 \* GB3 ②中位数有可能不是这组数据中的数; = 3 \* GB3 ③中位数反映了中间水平。
    2)众数:一组数据中出现次数最多的数据.
    注: = 1 \* GB3 ①众数不一定唯一; = 2 \* GB3 ②众数反应了一组数据中的趋势量,即数据出现频次最高的量。
    1.(2022·山东·薛城区八年级阶段练习)我区某中学在预防“新冠肺炎”期间,要求学生每日测量体温,九(5)班一名同学连续一周体温情况如表所示:则该名同学这一周体温数据的众数和中位数分别是( )
    A.和36.2B.36.2和C.36.2和36.2D.36.2和
    【答案】B
    【分析】根据众数和中位数的定义计算选择即可.
    【详解】因为出现次数最多的数据是36.2,故数据的众数是36.2;
    因为36.2,36.2,36.2,36.3,36.3,36.4,36.5,中间的数是36.3,所以数据的中位数是36.3,故选B.
    【点睛】本题考查了众数即出现次数最多的数据;中位数即将数据排序后中间的数据或中间两个数据的平均数,正确理解定义是解题的关键.
    2.(2022·江苏·无锡市九年级阶段练习)为了调查某小区居民的用水情况,随机抽查了若干户家庭的月用水量,结果如表,则关于这若干户家庭的用水量,下列说法错误的是( )
    A.众数是 B.平均数是 C.调查了户家庭的月用水量 D.中位数是
    【答案】B
    【分析】利用统计量的定义解题即可.
    【详解】解:A、出现了次,出现的次数最多,则众数是,故说法正确,本选项不符合题意;
    B、这组数据的平均数是:,故说法错误,本选项符合题意;
    C、调查的户数是,故说法正确,本选项不符合题意;
    D、这组数据从小到大排列,最中间的两个数的平均数是,故说法正确,本选项不符合题意;
    故选:B.
    【点睛】本题主要考查统计量的定义及计算方法,熟练的掌握众数,平均数,中位数的定义是解题关键.
    3.(2022·浙江·宁波市鄞州区教育局教研室八年级期末)一组数据,,,,的中位数和平均数相等,则的值是________.
    【答案】-3或或7
    【分析】根据中位数、平均数的意义列方程求解即可.
    【详解】解:由于数据1,2,4,6,x的中位数可能为2、4、x,且这组数据1,2,4,6,x的中位数和平均数相等,所以,或,或
    解得x=-3或x=7或x=,故答案为:-3或7或.
    【点睛】本题考查中位数、算术平均数,掌握中位数、算术平均数的计算方法是正确解答的前提.
    4.(2022·陕西商洛·八年级期末)从小到大排列的一组数据1,2,2,,6,7的中位数为3,则m的值为______.
    【答案】4
    【分析】根据中位数的定义即可求解.
    【详解】解:由题意可得,3,解得m=4.故答案为:4.
    【点睛】本题考查了中位数:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.掌握定义是解题的关键.
    5.(2022·山东滨州·八年级期末)从小到大的一组数据-2,1,2,,6,10的中位数为2,则这组数据的众数是___________.
    【答案】2
    【分析】先利用中位数的定义求出的值,再根据众数的定义即可求出这组数据的众数.
    【详解】解:∵从小到大的一组数据-2,1,2,,6,10的中位数为2,∴,
    2出现的次数最多,故这组数据的众数是2,故答案为:2.
    【点睛】本题主要考查了众数,中位数,解题的关键是将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.
    6.(2022·江苏·九年级专题练习)一组数据﹣1,3,1,2,b的唯一众数为﹣1,则这组数据的中位数为__.
    【答案】1
    【分析】根据众数和中位数的概念求解.
    【详解】解:∵数据-1、3、1、2、b的众数为-1,∴b=-1,
    则数据重新排列为-1、-1、1、2、3,所以中位数为1,故答案为1.
    【点睛】本题考查了众数和中位数的概念,一组数据中出现次数最多的数据叫做众数;将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.
    题型4 平均数、众数、中位数的综合运算
    1.(2022·黑龙江牡丹江·八年级期末)一组数据为1,3,2,2,a,b,c,唯一众数是3,平均数是2,则这组数据的中位数是_______.
    【答案】2
    【分析】根据唯一众数是3,可得a,b,c三个数中,有2个数均为3,再由平均数是2,可求出c=0,即可求解.
    【详解】解:∵唯一众数是3,∴a,b,c三个数中,有2个数均为3,
    不妨设a=3,b=3,∵平均数是2,∴(1+3+2+2+3+3+c)÷7=2,解得:c=0,
    ∴把这一组数从小到大排列为0,1, 2,2,3,3,3,位于第4位的数为2,
    ∴这组数据的中位数是2.故答案为:2
    【点睛】本题主要考查了众数,平均数的意义,求中位数,根据题意得到a,b,c三个数中,有2个数均为3是解题的关键.
    2.(2022·广东湛江·八年级期末)两组数据:3,a,2b,5与a,6,b的平均数都是6,若将这两组数据合并为一组数据,则这组新数据的众数为________.
    【答案】8
    【分析】根据平均数的意义,求出a、b的值,进而确定两组数据,再合并成一组,找出出现次数最多的数据即可.
    【详解】解:由题意得,,解得,
    这两组数合并成一组新数据为:,
    在这组新数据中,出现次数最多的是8,因此众数是8,故答案为:8.
    【点睛】此题考查了众数,掌握众数的定义是解题的关键,众数是一组数据中出现次数最多的数.
    3.(2022·江苏·九年级专题练习)五个正整数,中位数是,众数是,则这五个正整数的平均数是______ .
    【答案】或或
    【分析】首先根据众数与中位数的意义,推出这五个数据,再由平均数的意义得出结果.
    【详解】解:据题意得,此题有三个数为,,;
    又因为一组数据由五个正整数组成,所以另两个为,或,或,;
    所以这五个正整数的平均数是,或,或.
    故答案为:或或.
    【点睛】本题为统计题,考查平均数、众数与中位数的意义,解题时要注意理解题意,要细心,不要漏解.平均数:是指一组数据中所有数据之和再除以数据的个数;中位数:把一组数据按从小到大的顺序排列,在中间的一个数字(或者两个数字的平均值)叫做这组数据的中位数;众数:在一组数据中出现次数最多的数.
    4.(2022·湖北黄石·八年级期末)一组2,2x,y,12中,唯一的众数是12,平均数是10,这数据的中位数是_______.
    【答案】12
    【分析】先根据数据的平均数为,得出,再根据唯一众数为,得出或,然后按照从小到大排列即可得出答案.
    【详解】数据,,,的平均数是,,即,
    数据,,,唯一的众数是,或,即或,
    当时,,将数据按照从小到大排列如下:,,,,得出中位数为:;
    当时,,将数据按照从小到大排列如下:,,,,得出中位数为:;故答案:.
    【点睛】本题考查了平均数、中位数及众数的意义,解题的关键是熟练掌握相关概念并应用求解.
    5.(2022·福建·厦门八年级期末)已知一组数据由五个正整数组成,它的中位数和众数都是2,则这五个数的和的最小值是( )
    A.7B.8C.9D.10
    【答案】B
    【分析】根据题意可直接进行求解.
    【详解】解:由一组数据由五个正整数组成,它的中位数和众数都是2,若要使这五个数的和最小,则这五个数由1和2组成,即为1、1、2、2、2,其和为1+1+2+2+2=8;故选B.
    【点睛】本题主要考查中位数与众数,熟练掌握中位数与众数是解题的关键.
    6.(2022·河北保定·九年级期末)某部门为了解工人的生产能力情况,进行了抽样调查,随机抽取了20名工人每天每人加工零件的个数,整理得到如下统计表和条形统计图.
    根据以上信息,解答下列问题:(1)分别求,的值;(2)为调动积极性,该部门根据工人每天加工零件的个数制定了奖励标准,凡达到或超过这个标准的工人将获得奖励.如果想让60%左右的工人能获奖,应根据______来确定奖励标准比较合适(填“平均数”、“众数”或“中位数”);(3)该部门规定:每天加工零件的个数达到或超过21个的工人为生产能手,若该部门有300名工人,试估计该部门生产能手的人数.
    【答案】(1)众数m=18;中位数n=19(2)中位数(3)该部门生产能手为90人
    【分析】(1)根据众数和中位数的概念计算即可.
    (2)想让60%左右的工人能获奖意思就是要奖励前60%.
    (3)先计算这20个人中生产能手所占的百分比,再用300乘以这个百分比即可估计该部门生产能手的人数.
    (1)由条形统计图知,数据18出现的次数最多,∴众数m=18;
    中位数是第10、11个数据的平均数,而第10、11个数据都是19.∴中位数n=19;
    (2)想让60%左右的工人能获奖意思就是要奖励前60%
    ∴应根据中位数来确定奖励标准比较合适故答案为:中位数;
    (3)若该部门有300名工人,估计该部门生产能手的人数为300×=90(人)
    【点睛】本题主要考查了平均数,中位数,众数.掌握平均数,中位数,众数的计算方法及样本和总体的关系是解题的关键.
    题型5 方差与标准差的相关计算
    【解题技巧】
    1)极差:一组数据中最大值与最小值的差
    2)方差: 在一组数据中,各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差。通常用“”表示,即
    3)标准差:方差的算数平方根叫做这组数据的标准差,用“s”表示,即
    结论:若数据a1,a2,……an的方差是s2,则数据a1+b,a2+b,……an+b的方差仍然是s2,数据ka1+b,ka2+b,……kan+b的方差是k2s2.
    1.(2022·安徽·合肥二模)某班抽取名同学参加体能测试,成绩如下:,,,,,下列表述错误的是( )
    A.平均数是B.极差是C.中位数是D.标准差是
    【答案】D
    【分析】根据平均数,中位数,方差,极差的概念逐项分析.找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数;利用方差公式计算方差,利用平均数和极差的定义可分别求出.
    【详解】A. 由平均数公式求得:,故此选项正确,不符合题意;
    B. 极差是,故此选项正确,不符合题意;
    C. 把数据按大小排列,中间两个数为,,所以中位数是,故此选项正确,不符合题意;
    D. ,故标准差为:,故此选项错误,符合题意.故选:D.
    【点睛】本题考查了统计学中的平均数,方差,中位数与极差的定义,解答这类题学生常常对中位数的计算方法掌握不好而错选.
    2.(2022·浙江·宁波市镇海蛟川书院八年级期中)一组数据的方差计算公式为,则这组数据的方差是______.
    【答案】
    【分析】根据题意可得平均数,再根据方差的定义可得答案.
    【详解】解:平均数为:,
    故方差是:.
    故答案为:.
    【点睛】本题主要考查方差,解题的关键是掌握方差及平均数的定义.样本方差,其中n是这个样本的容量,是样本的平均数
    3.(2022·福建·福州日升中学八年级期中)如果有一组数据-2,0,1,3,的极差是6,那么的值是_________.
    【答案】4或-3##-3或4
    【分析】根据极差的定义求解.分两种情况:x为最大值或最小值.
    【详解】解:∵3-(-2)=5,一组数据-2,0,1,3,x的极差是6,
    ∴当x为最大值时,x-(-2)=6,解得x=4;
    当x是最小值时,3-x=6,解得:x=-3.
    故答案为:4或-3.
    【点睛】此题主要考查了极差的定义,正确理解极差的定义,能够注意到应该分两种情况讨论是解决本题的关键.
    4.(2022·福建·厦门实验中学二模)设数据x1,x2,x3,…,xn的平均数为x,方差S2=0,则下列式子一定正确的是( )
    A.x=0B.x1+x2+x3+…+xn=0C.x1=x2=x3=…=xn=0D.x1=x2=x3=…=xn=x
    【答案】D
    【分析】根据方差的定义,即可得出结论.
    【详解】解:∵数据x1,x2,x3,…,xn的平均数为x,方差S2=0,∴x1=x2=x3=…=xn=x.故选:D
    【点睛】本题考查了方差,熟练掌握方差的定义是解本题的关键.方差是各个数据与平均数之差的平方的和的平均数,因此方差一定是大于等于0.
    5.(2022·山东烟台·八年级期中)若一组数据13,14,15,16,x的方差比另一组数3,4,5,6,7的方差大,则x的值可能是( )
    A.12B.16C.17D.18
    【答案】D
    【分析】观察两组数据分布特点,根据方差的意义求解,也可先计算出后一组数据的方差,再取一个x的值计算出前一组数据的方差求解.
    【详解】数据3,4,5,6,7,每2个数相差1;数据13,14,15,16,x的前四个数据也相差1,若x=17或x=12,两组数据方差相等,
    而数据13,14,15,16,x的方差比另一组数3,4,5,6,7的方差大,
    则x的值可能是18,故D正确.故选:D.
    【点睛】本题主要考查方差,解题的关键是掌握方差的定义和方差的意义.
    6.(2022·江苏·盐城九年级阶段练习)省射击队要从甲、乙两名射击运动员中挑选一人参加全国比赛,在最近的4次选拔赛中,甲的射击的成绩如下(单位:环):7、8、9、8.
    (1)求甲运动员这4次选拔赛成绩的平均数;(2)求甲运动员这4次选拔赛成绩的方差.
    【答案】(1)甲运动员这4次选拔赛成绩的平均数8环;
    (2)甲运动员这4次选拔赛成绩的方差.
    【分析】(1)根据平均数计算方法可以解答本题即可;
    (2)根据平均数计算方法可以解答本题即可.
    (1)解:∵甲的射击的成绩如下(单位:环):7、8、9、8,
    ∴(环);
    (2)解:∵(环),甲的射击的成绩如下(单位:环):7、8、9、8,
    ∴.
    【点睛】本题考查平均数、方差,解答本题的关键是明确平均数和方差的计算方法,熟记算术平均数及方差公式.
    题型6 统计量的选择--众数
    1.(2022·河北秦皇岛·八年级期末)某幼儿园对全体小朋友爱吃哪种粽子做调查,以决定最终买哪种口味的粽子,下面的调查数据最值得关注的是( )
    A.平均数B.中位数C.众数D.方差
    【答案】C
    【分析】根据题意,可得:幼儿园调查的目的是得出最喜欢哪种口味的粽子的人数最多,以便决策,再根据众数的意义,即可得出结果.
    【详解】解:根据题意,可知:幼儿园调查的目的是明确最喜欢哪种口味的粽子的人数最多,
    ∵众数是数据中出现次数最多的数,
    ∴幼儿园最值得关注的是统计数据中的众数.
    故选:C.
    【点睛】本题考查了统计的有关知识,主要包括平均数、中位数、众数的意义,反映数据集中程度的统计量有平均数、中位数、众数等,各有局限性,因此要对统计量进行合理的选择和恰当的应用.
    2.(2022·浙江衢州·八年级期末)一家鞋店对上周某一品牌的销售情况统计如下表:
    该店决定本周进鞋时多进些尺码为23.5厘米的鞋,影响鞋店决策的统计量是( ).
    A.平均数B.中位数C.众数D.方差
    【答案】C
    【分析】根据各个选项的意义进行判断即可得到答案.
    【详解】观察各个尺码的鞋的销售量知,尺码为23.5厘米的鞋销售量最多,
    即影响鞋店决策的统计量是众数.故选:C.
    【点睛】本题考查统计的相关知识,掌握平均数、中位数、众数、方差的意义是关键.
    3.(2022·浙江杭州·八年级阶段练习)“冰墩墩”热潮持续不断,店家为合理进行资金分配,对上月各类型的爆款数量进行数据统计分析,从而确定各款商品批发数量,此时店家应重点参考( )
    A.众数B.平均数C.中位数D.方差
    【答案】A
    【分析】在决定在这个月的进货中多进某种型号服装,应考虑各种型号的服装销售数量,选销售量最大的,即参考众数.
    【详解】解:“冰墩墩”热潮持续不断,店家为合理进行资金分配,对上月各类型的爆款数量进行了数据统计分析,从而确定各款商品批发数量,此时店家应重点参考众数.故选:A.
    【点睛】此题主要考查统计的有关知识,主要包括平均数、中位数、众数的意义.反映数据集中程度的统计量有平均数、中位数、众数等,各有局限性,解题的关键是对统计量进行合理的选择和恰当的运用.
    4.(2022·安徽合肥·八年级期末)某品牌运动鞋专卖店在销售过程中,对近期不同尺码的鞋子销售情况进行了统计,若决定下次进货时,增加一些41码的鞋子,影响该决策的统计量是( ).
    A.平均数B.中位数C.众数D.方差
    【答案】C
    【分析】根据销量大的尺码就是这组数据的众数可得答案.
    【详解】解:由于众数是数据中出现次数最多的数,故影响该店主决策的统计量是众数.故选:C.
    【点睛】此题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.
    5.(2022·河北廊坊·八年级期末)某服装店试销一款女式防晒服,试销期间对不同颜色的防晒服的销售情况做了统计.如果服装店经理最关心的是哪种颜色的防晒服最畅销,那么对经理最有意义的统计量是( )
    A.平均数B.众数C.中位数D.方差
    【答案】B
    【分析】经理对服装店经理最有意义的是对不同颜色服装的销售数量,即众数.
    【详解】解:因为服装部经理最关注的是各种颜色防晒服不同的销售量,即众数,故选:B
    【点睛】此题主要考查统计的有关知识,解题的关键是掌握平均数、中位数、众数、方差的意义.反映数据集中程度的统计量有平均数、中位数、众数方差等,各有局限性,因此要对统计量进行合理的选择和恰当的运用.
    6.(2022·浙江·八年级期中)一家鞋店在一段时间内销售了某种女鞋30双,各种尺码的鞋销售量如下表:
    如果你是鞋店的经理,你会最关注哪个统计量( )
    A.平均数B.中位数C.众数D.方差
    【答案】C
    【分析】根据题意,结合众数的定义,鞋店的经理最关注的应该是最畅销的尺码,即鞋店的经理最关注的统计量是众数.
    【详解】解∵鞋店的经理最关注的应该是最畅销的尺码,即哪种尺码的鞋子需求量最大,销售量最多,
    又∵众数是数据中出现次数最多的数,众数能帮助鞋店的经理了解进货时应该进哪种尺码的鞋最多,
    ∴鞋店的经理最关注的统计量是众数.故选:C
    【点睛】本题主要考查统计量的选择,解题的关键是掌握平均数、中位数、众数及方差的意义.众数是数据中出现次数最多的数;中位数是一组数据按大小顺序排列后,处于中间位置的数(或取中间两数据的平均数).
    题型7 统计量的选择--中位数
    1.(2022·河北·石家庄九年级阶段练习)在一次15人参加的歌唱比赛中,预赛成绩各不同要取前8名参加决赛杨超越已经知道自己的成绩,她想知道自己是否能进入决赛,只需要再知道这15名选手成绩的( )
    A.平均数B.众数C.方差D.中位数
    【答案】D
    【分析】15人成绩的中位数是第8名的成绩,杨超越要想知道自己是否能进入决赛,只需要了解自己的成绩以及全部成绩的中位数,比较即可.
    【详解】解:共有15名学生参加预赛,取前8名,所以杨超越需要知道自己的成绩是否进入前8, 我们把所有同学的成绩按大小顺序排列,第8名的成绩是这组数据的中位数,所以她知道这组数据的中位数,才能知道自己是否进入决赛,故选D.
    【点睛】本题考查了统计量的选择,熟练掌握中位数的意义是解本题的关键.
    2.(2022·河南洛阳·八年级期末)在一次数学测试中,小明的成绩是75分,超过本班半数同学的成绩,分析得出这个结论所用的统计量是( )
    A.平均数B.众数C.中位数D.方差
    【答案】C
    【分析】根据中位数的意义求解可得.
    【详解】解:班级数学成绩排列后,最中间一个数或最中间两个分式的平均数是这组成绩的中位数,半数同学的成绩位于中位数以下,
    ∴小明成绩超过班级半数同学的成绩所用的统计量是中位数,故选:C.
    【点睛】此题考查了中位数的意义,熟记中位数的定义是解题的关键.
    3.(2022·福建·莆田八中八年级期末)为了方便市民出行,打造健康莆田,莆田市政府推出“Yu Bike微笑自行车”的社会公共服务项目.微笑自行车运营管理公司经过调查获得关于微笑自行车租用骑行时间的数据,并由此制定了收费标准:若每次租用单车骑行a小时以内,则不收取费用;若超过a小时后,超过部分每小时收费1元.为保证不少于50%的骑行是免费的,自行车运营管理公司应从此次调查得到的骑行时间的数据中,选取下列哪个统计了作为a的值( )
    A.平均数B.众数C.中位数D.方差
    【答案】C
    【分析】根据中位数的意义求解即可.
    【详解】解:∵要保证不少于50%的骑行是免费的,而中位数是这组数据最中间的数或最中间2个数的平均数∴选取中位数作为a的值最合适,故选:C.
    【点睛】本题主要考查统计量的选择,解题的关键是掌握中位数的意义.
    4.(2022·吉林长春·八年级期末)某校11名学生演讲赛的成绩各不相同,若某选手想知道自己能否进入前5名,则他不仅要知道自己的成绩,还应知道这11名学生成绩的( )
    A.平均数B.众数C.方差D.中位数
    【答案】D
    【分析】11人成绩的中位数是第6名的成绩,参赛选手要想知道自己是否能进入前5名,只需要了解自己的成绩以及全部成绩的中位数,比较即可.
    【详解】解:由于总共有11个人,且他们的分数互不相同,第6名的成绩是中位数,要判断是否进入前5名,故应知道中位数是多少,故D正确.
    故选:D.
    【点睛】本题主要考查统计量的选择,解题的关键是明确题意,选取合适的统计量.
    4.(2022·河南驻马店·八年级期末)杨靖宇将军纪念馆“红色小讲解员”演讲比赛中,7位评委分别给出某位选手的原始评分.评定该选手成绩时,从7个原始评分中去掉一个最高分、一个最低分,得到5个有效评分,5个有效评分与7个原始评分相比.这两组数据一定不变的是( )
    A.中位数B.众数C.平均数D.以上都不对
    【答案】A
    【分析】根据题意“从7个原始评分中去掉一个最高分、一个最低分,得到5个有效评分,5个有效评分与7个原始评分相比”和中位数的定义:“按顺序排列的一组数据中居于中间位置的数.”可知,7个原始评分和5个有效评分中最中间的数不发生变化,所以一定不变的是中位数.
    【详解】根据题意和中位数定义可知,从7个原始评分中去掉一个最高分、一个最低分,得到5个有效评分,5个有效评分与7个原始评分相比,最中间的数一定不变,即中位数一定不变.
    故选:A
    【点睛】本题考查数据的整理:平均数、中位数、众数等知识点.理解平均数、中位数、众数的定义特征是解本题的关键.
    平均数:在一组数据中所有数据之和再除以这组数据的个数.
    中位数:按顺序排列的一组数据中居于中间位置的数.
    众数:在一组数据中,出现次数最多的数.
    5.(2022·贵州黔东南·八年级期末)某装配车间为了较合理地确定每名工人标准目产量,车间管理者从过去的工作日中随机地抽查了该车间15名工人在某一天中各自装配机器的数量(单位:台),具体如下:6,7,7,8,8,8,8,9,10,10,11,13,15,15,16.根据抽样的数据,车间管理者将每名工人标准日产量定为9台,其依据是统计数据中的( )
    A.最大数据B.众数C.中位数D.平均数
    【答案】C
    【分析】根据中位数的意义即可得出答案.
    【详解】解:由抽样数据可知,其中位数是排序后第8个数据,即9,且最大数据、众数、平均数都不是9,
    ∴车间管理者将每名工人标准日产量定为9台,其依据是统计数据中的中位数,
    故选:C.
    【点睛】此题考查了中位数、众数、平均数及运用中位数作决策,熟练掌握中位数、众数、平均数的求法是解题的关键.
    6.(2022·河南洛阳·九年级)某停车场规定,停车时间在小时以内收费元,超过小时的,每小时另收元,若要让在该停车场停车的的人只花元钱,应取( )
    A.平均数B.众数C.中位数D.方差
    【答案】C
    【分析】根据中位数的定义,其值总是将所有数据按从小到大依次排列后,处于最中间的那个数(或中间两个数的平均数),做出判断即可.
    【详解】解:∵要让在该停车场停车的的人只花元钱,
    ∴a取中位数时才能满足条件,故选:C.
    【点睛】本题考查了数据分析和中位数的定义,掌握知识点是解题关键.
    题型8 统计量的选择--方差
    【解题技巧】
    极差反映了一组数据中极端值的变化。当极差越小,则数据越稳定;极差越大,则数据极端数值波动越大。
    方差(标准差)反映整体数据波动情况;方差(标准差)越小,整体数据越稳定。
    1.(2022·浙江·永嘉县八年级期中)如表记录了甲、乙、丙、丁四名学生近10次英语词汇成绩的数据信息,要选择一名成绩好又发挥稳定的学生参加年级英语词汇比赛,应该选择的是( )
    A.甲B.乙C.丙D.丁
    【答案】C
    【分析】成绩好,需要考查平均分;发挥稳定,需要考查方差.
    【详解】∵乙和丙的平均数最高,乙和丙的方差分别为8.5和1.5
    ∴丙的成绩好又发挥稳定.故答案为:C.
    【点睛】本题考查平均数和方差,需要注意,方差越小,则这组数据越稳定,理解方差衡量数据的稳定性时,方差越小,越稳定是解题的关键.
    2.(2022·福建·福州九年级阶段练习)八年级一班的平均年龄是12.5岁,方差是40,过一年后该班学生到九年级时,下列说法正确的是( )
    A.平均年龄不变B.年龄的方差不变C.年龄的众数不变D.年龄的中位数不变
    【答案】B
    【分析】根据题意求出一年后该班学生的平均年龄和方差,结合选项得到答案.
    【详解】解:过一年后该班学生到九年级时,平均年龄是13.5岁,方差是40,年龄的众数,年龄的中位数都比原来多1,故选:B.
    【点睛】本题考查的是平均数、方差的知识,掌握当数据都加上一个数(或减去一个数)时,方差不变,即数据的波动情况不变是解题的关键.
    3.(2021·浙江湖州市·九年级一模)已知某运动队的甲、乙、丙、丁四名射击运动员平时训练的平均成绩(单位:环)以及方差(单位:环)如下表,现要选一名成绩优秀且稳定的队员参加某项比赛,则应选( )
    A.甲B.乙C.丙D.丁
    【答案】D
    【分析】方差越小越稳定,据此解题.
    【详解】解:又
    丁的成绩优秀且最稳定,故选:D.
    【点睛】本题考查方差的应用,涉及平均数等知识,是基础考点,难度较易,掌握相关知识是解题关键.
    4.(2021·浙江宁波市·九年级二模)一组数据1,2,3,4,5的方差是a,若增加一个数据9,则增加后6个数据的方差为b,则a与b的大小关系是( )
    A.a < bB.a = bC.a > bD.不能确定
    【答案】A
    【分析】根据平均数的计算公式先计算出各组数据的平均数,再根据方差公式求出各组数据的方差,然后进行比较即可.
    【详解】解:数据1,2,3,4,5的平均数是:,
    方差:,
    数据1,2,3,4,5,9的平均数是:,
    方差:,则;故选:A.
    【点睛】本题考查了方差,一般地设n个数据,x1,x2,…xn的平均数为,则方差为.它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.
    5.(2022·重庆铜梁·八年级期末)在平均数、中位数、众数、方差等几个统计量中,最能刻画数据波动(离散)程度的量是______.
    【答案】方差
    【分析】根据方差和标准差反映了一组数据与其平均值的离散程度的大小.方差(或标准差)越大,数据的离散程度越大,稳定性越小;反之,则离散程度越小,稳定性越好可得答案.
    【详解】解:在平均数、中位数、众数、方差等几个统计量中,最能刻画数据波动(离散)程度的量是方差,故答案为:方差.
    【点睛】此题考查了统计量的选择,关键是掌握平均数、众数、中位数和极差、方差在描述数据时的区别.
    6.(2022·北京·首都师范大学附属中学九年级阶段练习)电影公司随机收集了2000部电影的有关数据,经分类整理得到下表:
    好评率是指一类电影中获得好评的部数与该类电影的部数的比值.
    电影公司为增加投资回报,拟改变投资策略,这将导致不同类型电影的好评率发生变化.假设表格中只有两类电影的好评率数据发生变化,那么第____类电影的好评率增加0.1,第____类电影的好评率减少0.1,可以使获得好评的电影总部数与样本中的电影总部数的比值达到最大.
    【答案】 五 二
    【分析】只要两类电影的好评率发生变化,根据各类电影的部数即可确定答案.
    【详解】∵表格中只有两类电影的好评率数据发生变化,某类电影的好评率增加0.1,某类电影的好评率减少0.1,且第五类的电影部数最多,第二类的电影部数最少,
    ∴只要第五类电影的好评率增加0.1,第二类电影的好评率减少0.1,可以使获得好评的电影总部数与样本中的电影总部数的比值达到最大.故答案为:五,二.
    【点睛】此题考查统计量的选择,利用表格中的各类电影的部数确定变化的依据是解题的关键.
    题型9平均数、中位数、众数、方差相关判断
    【解题技巧】平均数的优点:平均数的计算过程中用到了一组数据中的每一个数,因此比中位数和众数更灵敏,反映了更多数据的信息.
    平均数的缺点:计算较麻烦,而且容易受到极端值的影响.
    中位数的优点:计算简单,不容易受到极端值的影响,确定了中位数之后,可以知道小于中位数的数值和大于中位数的数值在这组数据中各占一半.
    中位数的缺点:除了中间的值以外,不能反映其他数据的信息.
    众数的优点:众数很容易从直方图中获得,它可以清楚地告诉我们:在一组数据中哪个或哪些数值出现的次数最多.
    众数的缺点:不能反映众数比其他数出现的次数多多少,而且也丢失了很多其他数据的信息.
    1.(2022·山东·八年级单元测试)某校八年级甲、乙两班举行电脑汉字输入比赛,两个班参加比赛的学生每分钟输入汉字的个数经统计和计算后结果如下表:
    有一位同学根据上面表格得出如下结论:①甲、乙两班学生的平均水平相同;
    ②乙班优秀人数比甲班优秀人数多(每分钟输入汉字达150个以上为优秀);
    ③甲班学生比赛成绩的波动比乙班学生比赛成绩的波动大.上述结论正确的是___________(填序号).
    【答案】①②③
    【分析】根据中位数,平均数和方差的意义,逐一判断即可.
    【详解】解:由于乙班学生每分钟输入汉字的中位数为151,说明有一半以上的学生都达到每分钟150个及以上,而甲班学生的中位数为149,说明不到一半的学生达到150个及以上,说明乙班优秀人数比甲班优秀人数多,故②正确;由平均数和方差的意义可知①③也正确.故答案是:①②③.
    【点睛】本题主要考查中位数,平均数和方差,掌握中位数和方差的意义,是解题的关键.
    2.(2022·成都市·八年级课时练习)某次跳绳比赛中,统计甲、乙两班学生每分钟跳绳的成绩(单位:次)情况如下表:
    下列三个命题:(1)甲班平均成绩低于乙班平均成绩;(2)甲班成绩的波动比乙班成绩的波动大;
    (3)甲班成绩优秀人数少于乙班成绩优秀人数.(跳绳次数次为优秀)
    其中正确的命题是___________.(只填序号)
    【答案】(2)(3)
    【分析】平均数表示一组数据的平均程度,根据表示确定两班的平均成绩,进而判断说法(1);由于方差是用来衡量一组数据波动大小的量,通过比较两班的方差,就能对(2)的说法进行分析;中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数),进而判断(3)的正误.
    【详解】解:两个班的平均成绩均为135次,故(1)错误;
    方差表示数据的波动大小,甲班的方差大于乙的,说明甲班的成绩波动大,故(2)正确;
    中位数是数据按从小到大排列后,中间的数或中间两数的平均数,甲班的中位数小于乙班的,说明甲班学生成绩优秀人数不会多于乙班学生的成绩优秀的人数,故(3)正确.
    综上可得三个说法中只有(2)(3)正确.故答案为:(2)(3).
    【点睛】本题考查了平均数、中位数、方差的意义,平均数表示一组数据的平均程度,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数);方差是用来衡量一组数据波动大小的量.
    3.(2022·黑龙江·五常市八年级期末)某次体育活动中,统计甲、乙两班学生每分钟跳绳的成绩(单位:次)情况如下:
    请你从下面三个结论中,选出所有正确的命题
    ①甲班学生的平均成绩高于乙班学生的平均成绩;②甲班学生的成绩波动比乙班学生的成绩波动大;
    ③甲班学生的成绩优秀人数不会多于乙班学生的成绩优秀人数(跳绳次数≥150次为优秀)
    以上三个结论中正确的是_______(把所有正确的结论的序号填在横线上)
    【答案】②③
    【分析】根据平均数、中位数、方差的意义分析三个说法.对于③,乙班的中位数为151,说明乙班至少有一半的为优秀.
    【详解】解:两个班的平均成绩均为135次,故①错误;
    方差表示数据的波动大小,甲班的方差大于乙的,说明甲班的成绩波动大,故②正确;
    中位数是数据按从小到大排列后,中间的数或中间两数的平均数,甲班的中位数小于乙班的,说明甲班学生成绩优秀人数不会多于乙班学生的成绩优秀的人数,故③正确.故答案为:②③.
    【点睛】本题考查了平均数、中位数、方差的意义.平均数表示一组数据的平均程度.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数);方差是用来衡量一组数据波动大小的量.
    4.(2022·北京·九年级专题练习)某景区为了解游客人数的变化规律,提高旅游服务质量,收集并整理了某月天)接待游客人数(单位:万人)的数据,绘制了下面的统计图和统计表.
    根据以上信息,以下四个判断中,正确的是____(填写所有正确结论的序号).
    ①该景区这个月游玩环境评价为“拥挤或严重拥挤”的天数仅有4天;②该景区这个月每日接待游客人数的中位数在万人之间;③该景区这个月平均每日接待游客人数低于5万人;④这个月1日至5日的五天中,如果某人曾经随机选择其中的两天到该景区游玩,那么他“这两天游玩环境评价均为好”的可能性为.
    【答案】①④
    【分析】根据统计图与统计表,结合相关统计或概率知识逐个选项分析即可.
    【详解】解:①根据题意每日接待游客人数为拥挤,为严重拥挤,
    由统计图可知,游玩环境评价为“拥挤或严重拥挤”,1日至5日有1天,25日日有3天,共4天,故①正确;②本题中位数是指将30天的游客人数从小到大排列,第15与第16位的和除以2,
    根据统计图可知的有16天,从而中位数位于范围内,故②错误;
    ③从统计图可以看出,接近10的有6天,大于10而小于15的有2天,15以上的有2天,
    10上下的估算为10,则,
    可以考虑为给每个0至5的补上3.25,则大部分大于5,而0至5范围内有6天接近5,故平均数一定大于5,故③错误;④由题意可知“这两天游玩环境评价均为好”的可能性为:,故④正确.答案:①④.
    【点睛】本题考查了中位数、平均数及可能性等概率与统计知识,掌握相关基础概念并结合统计图表进行分析是解题的关键.
    5.(2022·江苏·苏州二模)牛年伊始,中国电影行业迎来了开门红.春节档期全国总观影人次超过1.6亿,总票房超过80亿元.以下是甲、乙两部春节档影片上映后的票房信息.
    a.两部影片上映第一周单日票房统计图.
    b.两部影片分时段累计票房如下
    (以上数据来源于中国电影数据信息网).
    根据以上信息,回答下列问题:(1)2月12日-18日的一周时间内,影片乙单日票房的中位数为__________;
    (2)对于甲、乙两部影片上映第一周的单日票房,下列说法中所有正确结论的序号是__________;
    ①甲的单日票房逐日增加;②甲单日票房的方差小于乙单日票房的方差;
    ③在第一周的单日票房统计中,甲超过乙的差值于2月17日达到最大.
    (3)截止到2月21日,影片甲上映后的总票房超过了影片乙,据此估计,2月19日-21日三天内影片甲的累计票房应超过_________亿元.
    【答案】(1)4.36 ; (2)②③ ; (3)8.61.
    【分析】(1)影片乙单日票房从小到大排序,根据中位数定义可得影片乙单日票房的中位数为:4.36;
    (2)①甲票房从2月12日到16日单日票房逐日增加,17日18日逐日下降,可判断①不正确②先求出平均数,,在求出方差,,可判②正确;③求出甲超过乙的差值15日1.02,16日2.77,17日3.2,18日2.65,可判断③正确;
    (3)利用乙票房的收入减去甲票房前7天的收入即可得到最后三天的累计额即可.
    【详解】解:(1)影片乙单日票房从小到大排序为1.63,2.32,3.13,4.36,7.49,8.18,10.11一共7个数据,所以影片乙单日票房的中位数为:4.36,故答案为:4.36;
    (2)①甲票房从2月12日到16日单日票房逐日增加,17日18日逐日下降,
    所以甲的单日票房逐日增加说法不正确
    ②,,


    所以甲单日票房的方差小于乙单日票房的方差正确;
    ③甲超过乙的差值从15日开始分别为,15日1.02,16日2.77,17日3.2,18日2.65,
    所以在第一周的单日票房统计中,甲超过乙的差值于2月17日达到最大正确.
    说法中所有正确结论的序号是②③,故答案案为:②③;
    (3)乙票房截止到21日收入为:37.22+2.95=40.17亿,
    甲票房前7天达到31.56亿,2月19日-21日三天内影片甲的累计票房至少为:40.17-31.56=8.61亿.
    故答案为:8.61.
    【点睛】本题考查中位数,观察折线图的变化趋势,平均数,方差,利用票房的收入进行估算,掌握中位数,观察折线图的变化趋势,平均数,方差,利用票房的收入进行估算是解题关键.
    6.(2022·北京·九年级专题练习)某公司销售一批新上市的产品,公司收集了这个产品15天的日销售额的数据,制作了如下的统计图.
    关于这个产品销售情况有以下说法:
    ①第1天到第5天的日销售额的平均值低于第6天到第10天的日销售额的平均值;
    ②第6天到第10天日销售额的方差小于第11天到第15天日销售额的方差;
    ③这15天日销售额的平均值一定超过2万元.所有正确结论的序号是________.
    【答案】①②③
    【分析】根据图像信息,可求得第1天到第5天销售额的平均值3.4万,第6天到第10天的日销售额的平均值4.5万可判断①正确;由第6天到第10天日销售额波动较小,销售额的方差较小,第11天到第15天日销售额逐天下降,波动较大,销售额的方差较大,可判断②正确;
    销售额超4万有7天,销售额超3万以上4万以下有4天,销售额超2万以上3万以下有3天,只有第十五天销售额1万,这15天日销售额的平均值约等于,可判断③正确.
    【详解】第一天2万,第二天3万,第三天3.5万,第四天4万,第五天约4.5万. 销售额的平均值3.4万,
    第六天4.5万,第七天4.5万,第八天4.5万,第九天4.5万,第十天约4.5万,销售额的平均值4.5万
    ∴①第1天到第5天的日销售额的平均值低于第6天到第10天的日销售额的平均值正确;
    ∵第6天到第10天日销售额波动较小,第6天到第10天日销售额的方差较小,
    第11天到第15天日销售额逐天下降,波动较大,第11天到第15天日销售额的方差较大,
    ∴②第6天到第10天日销售额的方差小于第11天到第15天日销售额的方差正确;
    销售额超4万有7天,销售额超3万以上4万以下有4天,销售额超2万以上3万以下有3天,只有第十五天销售额1万,这15天日销售额最低值的平均值约等于.
    ∴③这15天日销售额的平均值一定超过2万元正确.所有正确结论的序号是①②③.故答案为:①②③.
    【点睛】本题考查图像信息,平均数,方差,加权平均数,掌握从图像获取信息的方法,平均数,方差,加权平均数是解题关键.
    题型10 统计综合题
    1.(2022·重庆南开中学八年级期末)2022年,教育部制定了独立的《义务教育劳动课程标准》,其中规定:以劳动项目为载体,以孩子经历体验劳动过程为基本要求,培养学生的核心劳动素养.某校分别从该校七、八年级学生中各随机调查了100名学生,统计他们上周的劳动时间,劳动时间记为x分钟,将所得数据分为5个组别(A组:;B组:;C组:;D组:;E组:),将数据进行分析,得到如下统计:
    ①八年级B组学生上周劳动时间从高到低排列,排在最后的10个数据分别是:82,82,81,81,81,81,80,80,80,80.
    ②八年级100名学生上周劳动时间频数分布统计表:
    ③七、八年级各100名学生上周劳动时间的平均数、中位数、众数如下表:
    ④七年级100名学生上周劳动时间分布扇形统计图
    请你根据以上信息,回答下列问题:(1)______,______,______;
    (2)根据以上数据分析,你认为七、八年级哪个年级学生上周劳动情况更好,请说明理由;(写出一条即可)
    (3)已知七年级有800名学生,八年级有600名学生,请估计两个年级上周劳动时间在80分钟以上(含80分钟)的学生一共有多少人?
    【答案】(1)10,40,80.5;
    (2)八年级的较好,理由:八年级学生参加劳动的时间的中位数、众数均比七年级的大;(3)562.
    【分析】(1)在扇形统计图中,先求出“组”所占的百分比,再求出“组”所占的百分比,确定的值,根据八年级的频数之和等于100可求出的值,再根据中位数的定义求出的值;
    (2)从中位数、众数的大小比较得出答案;
    (3)求出七年级、八年级上周劳动时间在80分钟以上(含80分钟)的学生数即可.
    (1)解:根据扇形统计图可知,“组”所占的百分比为,
    所以“组”所占的百分比为,
    即;;
    八年级的中位数在组,将100名学生的劳动时间从大到小排列,处在中间位置的两个数的平均数为,即;故答案为:10,40,80.5;
    (2)解:八年级的较好,理由:八年级学生参加劳动的时间的中位数、众数均比七年级的大;
    (3)解:(人,
    答:七、八年级上周劳动时间在80分钟以上(含80分钟)的学生大约有562人.
    【点睛】本题考查扇形统计图,频数分布表、中位数、众数、平均数以及样本估计总体,解题的关键是理解平均数、中位数、众数的定义,掌握平均数、中位数、众数的计算方法.
    2.(2022·福建泉州·八年级期末)2022年春季,安溪县初中数学学科教学联盟组编写“县本小单元分层作业”测试卷,现将某试点校八年级甲、乙两位选做“强基”层次的同学的10次测试成绩,绘制如图统计图.
    (1)根据图中提供的数据列出如表统计表:
    则a= ,b= .
    (2)现在要从这两位同学中选派一位参加数学素养竞赛,根据以上信息你认为应该选派谁?请简要说明理由.
    【答案】(1)80、80 (2)选乙(答案不唯一),理由见解析
    【分析】(1)根据平均数的公式,众数的定义求出即可;
    (2)根据平均数,众数分析得出即可.
    (1)解:根据题意得:甲选做“强基”层次的同学的10次测试成绩为80,70,90,80,70,90,70,80,90,80,乙选做“强基”层次的同学的10次测试成绩为80,60,100,70,90,50, 90,70,90,100,
    ∴甲选做“强基”层次的同学的10次测试成绩中,80出现的次数最多,∴a=80,
    乙选做“强基”层次的同学的10次测试成绩的平均数为
    ,故答案为:80,80;
    (2)解:选乙,理由如下:
    甲和乙的平均分一样,而甲的众数是80,乙的众数是 90,即乙的众数比甲大.
    选甲也可以找出合适的理由,因此答案不唯一.
    【点睛】本题考查了平均数、众数.理解平均数表示一组数据的平均水平,众数的一组数据中出现次数最多的数是解题的关键.
    3.(2021·广西来宾·中考真题)某水果公司以元/的成本价新进箱荔枝,每箱质量,在出售荔枝前,需要去掉损坏的荔枝,现随机抽取箱,去掉损坏荔枝后称得每箱的质量(单位:)如下:


    (1)直接写出上述表格中,,的值;
    (2)平均数、众数、中位数都能反映这组数据的集中趋势,请根据以上样本数据分析的结果,任意选择其中一个统计量,估算这箱荔枝共损坏了多少千克?
    (3)根据(2)中的结果,求该公司销售这批荔枝每千克定为多少元才不亏本?(结果保留一位小数)
    【答案】(1)a=6,b=4.7,c=4.75;(2)500kg;(3)10.5元.
    【分析】(1)用20减去各数据的频数即可求出a,根据众数、中位数的意义即可求出b、c;
    (2)选用平均数进行估算,用每箱损坏数量乘以2000即可求解;
    (3)用购买的总费用除以没有损坏的总数量即可求出解.
    【详解】解:(1)a=20-2-1-7-3-1=6;
    在这20个数据中,4.7频数最大,所以众数b=4.7;
    将这20个数据排序,第10、11个数据分别为4.7、4.8,所以中位数c=;
    (2)选用平均数进行估算,(5-4.75)×2000=500kg,
    答:选用平均数进行估算,这箱荔枝共损坏了500千克;
    (3)(10×2000×5)÷(4.75×2000)≈10.5元
    答:该公司销售这批荔枝每千克定为10.5元才不亏本.
    【点睛】本题考查用众数、中位数、用样本估计总体等知识,熟知相关概念并理解题意是解题关键.
    4.(2022·北京市九年级开学考试)为进一步增强中小学生“知危险会避险”的意识,某校初三年级开展了系列交通安全知识竞赛,从中随机抽取30名学生两次知识竞赛的成绩(百分制),并对数据(成绩)进行收集、整理、描述和分析.下面给出了部分信息.
    a.这30名学生第一次竞赛成绩和第二次竞赛成绩得分情况统计图:
    b.下表是这30名学生两次知识竞赛的获奖情况相关统计:
    (规定:分数90,获卓越奖;85分数<90,获优秀奖;分数<85,获参与奖)
    c.第二次竞赛获卓越奖的学生成绩如下:
    90 90 91 91 91 91 92 93 93 94 94 94 95 95 96 98
    d. 两次竞赛成绩样本数据的平均数、中位数、众数如下表:
    根据以上信息,回答下列问题:
    (1)小松同学第一次竞赛成绩是89分,第二次竞赛成绩是91分,在图中用“○”圈出代表小松同学的点;
    (2)直接写出m,n的值;(3)可以推断出第 次竞赛中初三年级全体学生的成绩水平较高,理由是 .
    【答案】(1)见解析;(2)88,90;(3)二,理由需支持推断
    【分析】(1)根据统计图找出的点(89,91)的位置,可以确定小松同学第一次竞赛成绩是89分,第二次竞赛成绩是91分圈出即可;
    (2)根据加权平均数与中位数定义可求;
    (3)利用平均数、中位数、众数进行决策即可.
    【详解】解:(1)根据表中数据找出第一次考试成绩在89分这一列,位于表中第二次考试成绩91分横行,横列交叉位置
    ∴圈出的数代表小松同学第一次成绩是89分,第二次成绩91分
    (2)第一次竞赛成绩分 ,
    第二次竞赛获卓越奖的学生成绩排序如下:
    90 90 91 91 91 91 92 93 93 94 94 94 95 95 96 98
    第二次竞赛学生成绩为30人,是偶数,中位数位于,16位置
    ∵参与+优秀=2+12=14人,
    ∴15,16位置的两名学生成绩为90分,90分,
    中位数是分,
    ∴m=88,n=90.
    (3)根据平均数第二次90分第一次88分,根据中位数第二次90分第一次87.5分,从众数看第二次91分第一次88分,
    可以推断出第二次竞赛中初三年级全体学生的成绩水平较高.
    故答案为:二.
    【点睛】本题考查统计图分析,加权平均数、中位数、众数,掌握统计图分析方法,加权平均数、中位数、众数数据分析,利用数据分析进行决策.
    5.(2022·重庆市开州区九年级阶段练习)2021年,全世界自然灾害形势严峻,洪水、地震等不仅给人们的财产带来巨大损失,更是威胁着人们的生命安全.保护生态环境即是保护民生,功在当代,利在千秋;做好综合环境治理,协调人与自然的关系,以求人和自然和谐相处迫在眉急.近日,某校组织了一场关于防自然灾害的知识讲座,并在讲座后进行了满分为100分的“防自然灾害知识测评”,为了了解学生的测评情况,该校在七、八年级中分别抽取了50名学生的分数进行整理分析,已知分数x均为整数,且分为A,B,C,D,E五个等级,分别是A:;:;:;:;:.并给出了部分信息:
    【一】八年级D等级的学生人数占八年级抽取人数的20% ;
    七年级C等级中最低的10个分数分别为:70,70,72,73,73,73,74,74,75,75;
    【二】两个年级学生防自然灾害知识测评分数统计图:
    【三】两个年级学生防自然灾害知识测评分数样本数据的平均数、中位数、众数如下:
    (1)填空:a = ,m = ,补全条形统计图;
    (2)根据以上数据,你认为在此次测评中,哪一个年级的学生对防自然灾害知识掌握较好?请说明理由(说明一条即可).
    (3)若分数不低于90分表示该生对防自然灾害知识测评等级为优秀,且该校七年级有1000人,八年级有1200人,请估计该校七、八年级所有学生中,对防自然灾害知识测评等级为优秀的学生共有多少人?
    【答案】(1)74,32,补全条形统计图见解析
    (2)八年级的学生对防自然灾害知识掌握较好,理由见解析
    (3)估计该校七、八年级所有学生中,对防自然灾害知识测评等级为优秀的学生共有400人
    【分析】(1)根据题意和统计图中的数据、表格中的数据可以分别得到a、m的值,根据八年级D等级的学生人数占七年级抽取人数的20%求出八年级D等级的学生人数,再求出E等级的学生人数,即可补全条形统计图;
    (2)根据表格中的数据,由中位数和众数的大小判断即可;
    (3)分别求出该校七、八年级不低于90分的人数,再相加即可求解.
    (1)解:根据题意,由七年级学生防自然灾害知识测评分统计图可知,
    ,∴m=32,
    七年级学生中,测评成绩A级有人,B级有人,C级有人,D级有人,E级有人,
    测评成绩按从小到大排列,其中第25、26位为C级中74、74两个成绩,
    可知七年级测评成绩中位数为,故答案为:74,32;
    八年级D等级的学生人数为:50×20%=10人,E等级的学生人数为:50﹣10﹣12﹣16﹣10=2人,
    故补全条形统计图如图:
    (2)解:八年级的学生对防自然灾害知识掌握较好.理由如下:
    虽然七、八年级测评成绩的平均数相同,但是八年级测评成绩的中位数和众数较高,因此八年级的测评成绩较好;
    (3)解:(人)
    答:估计该校七、八年级所有学生中,对防自然灾害知识测评等级为优秀的学生共有400人.
    【点睛】本题考查用样本估计总体、统计图、中位数、众数等知识,解答本题的关键是明确题意,灵活运用所学知识解答问题.
    6.(2022·江苏丹阳·初三二模)某校需要选出一名同学去参加市“生活中的数学说题”比赛,现有名候选人参加该校举办的模拟说题比赛,挑选出成绩最高者参加说题比赛.已知名候选人模拟说题比赛成绩情况如表所示.
    某校名候选人模拟说题比赛成绩情况
    名候选人模拟说题比赛)成绩的中位数是
    由于两名候选人成绩并列第一;所以学校决定根据两人平时成绩、任课老师打分、模拟说题比赛成绩按的比例最后确定成绩,最终谁将参加说题比赛.已知两名候选人平时成绩、任课老师打分情况如表所示.请你通过计算说明最终谁将参加说题比赛?
    【答案】(1)85;(2)候选人将参加说题比赛,理由详见解析
    【分析】(1)根据中位数的定义即可求出结论;(2)根据加权平均数的公式计算并比较大小即可得出结论.
    【解析】解:把这些数从小到大排列为:,则名候选人模拟说题比赛成绩的中位数是;
    的平均成绩是:的平均成绩是:
    最终候选人将参加说题比赛.
    【点睛】此题考查的是中位数和加权平均数,掌握中位数的定义和加权平均数公式是解决此题的关键.
    项目
    成绩
    小李
    小张
    小王
    小周
    评委
    90
    94
    85
    92
    观众
    95
    88
    94
    94
    项目
    演讲内容
    演讲技巧
    仪表形象

    95
    90
    85

    90
    95
    90
    学生
    学业水平测试成绩
    综合测试成绩
    高考成绩

    85
    89
    81

    88
    81
    83
    选手
    表达能力
    阅读理解
    综合素质
    汉字听写

    85
    78
    85
    73

    73
    80
    82
    83
    日期
    星期一
    星期二
    星期三
    星期四
    星期五
    星期六
    星期天
    体温(℃)
    36.2
    36.2
    36.2
    月用水量/吨
    户数/户
    统计量
    平均数
    众数
    中位数
    数值
    19.2
    尺码(厘米)
    22.5
    23
    23.5
    24
    24.5
    销售量(双)
    2
    5
    11
    7
    3
    尺码
    39
    40
    41
    42
    43
    平均每天销售数量/双
    16
    16
    25
    24
    20
    尺码/厘米
    22
    22.5
    23
    23.5
    24
    24.5
    25
    销售量/双
    1
    2
    5
    11
    7
    3
    1




    平均数(分)
    90
    93
    93
    92
    方差()
    1.5
    8.5
    1.5
    5.5




    9.0
    9.0
    9.5
    9.5
    0.5
    2.2
    1.7
    0.5
    电影类型
    第一类
    第二类
    第三类
    第四类
    第五类
    第六类
    电影部数
    140
    50
    300
    200
    800
    510
    好评率
    0.4
    0.2
    0.15
    0.25
    0.2
    0.1
    班级
    参加人数
    平均字数
    中位数
    方差

    55
    135
    149
    191

    55
    135
    151
    110
    班级
    参加人数
    平均次数
    中位数
    方差

    45
    135
    149
    180

    45
    135
    151
    130
    班级
    参加人数
    平均成绩(次)
    中位数(次)
    方差
    甲班
    55
    135
    149
    190
    乙班
    55
    135
    151
    110
    每日接待游客人数(单位:万人)
    游玩环境评价

    一般
    拥挤
    严重拥挤
    上映影片
    2月12日-18日累计票房(亿元)
    2月19-21日累计票房(亿元)

    31.56

    37.22
    2.95
    分组
    A
    B
    C
    D
    E
    频数
    14
    b
    27
    13
    6
    年级
    平均数
    中位数
    众数
    七年级
    81.3
    79.5
    82
    八年级
    81.3
    c
    83
    平均成绩(分)
    众数(分)

    80
    b

    a
    90
    整理数据:
    分析数据:
    质量()
    平均数
    众数
    中位数
    数量(箱)
    参与奖
    优秀奖
    卓越奖
    第一次竞赛
    人数
    10
    10
    10
    平均分
    82
    87
    95
    第二次竞赛
    人数
    2
    12
    16
    平均分
    84
    87
    93
    平均数
    中位数
    众数
    第一次竞赛
    m
    87.5
    88
    第二次竞赛
    90
    n
    91
    平均数
    中位数
    众数
    七年级
    76
    a
    72
    八年级
    76
    75
    73
    候选人
    模拟说题比赛成绩
    83
    75
    90
    85
    90
    平时成绩
    95
    85
    任课老师打分
    80
    90
    相关试卷

    人教版八年级数学下册重难题型全归纳及技巧提升专项精练第二十章数据的分析章末检测卷(原卷版+解析): 这是一份人教版八年级数学下册重难题型全归纳及技巧提升专项精练第二十章数据的分析章末检测卷(原卷版+解析),共32页。试卷主要包含了5C.87D.88等内容,欢迎下载使用。

    人教版八年级数学下册重难题型全归纳及技巧提升专项精练专题19.1一次函数重难点题型13个(原卷版+解析): 这是一份人教版八年级数学下册重难题型全归纳及技巧提升专项精练专题19.1一次函数重难点题型13个(原卷版+解析),共57页。试卷主要包含了下列函数等内容,欢迎下载使用。

    人教版八年级数学下册重难题型全归纳及技巧提升专项精练专题18.1平行四边形重难点题型12个(原卷版+解析): 这是一份人教版八年级数学下册重难题型全归纳及技巧提升专项精练专题18.1平行四边形重难点题型12个(原卷版+解析),共79页。试卷主要包含了故选C等内容,欢迎下载使用。

    • 精品推荐
    • 所属专辑

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        人教版八年级数学下册重难题型全归纳及技巧提升专项精练专题20.1数据的分析重难点题型10个(原卷版+解析)
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map