数学选择性必修 第一册1.3 空间向量及其运算的坐标表示备课课件ppt
展开目录/CONTENTS
1.了解空间直角坐标系2,理解空间直角坐标系的知识形成过程和原理,会用空间直角坐标系刻画点的位置,掌握空间向量的坐标表示3.体会类比和归纳的数学思想
学习了空间向量基本定理,建立了“空间基底”的概念,我们就可以利用基底表示任意一个空间向量,进而把空间向量的运算转化为基向量的运算.所以,基底概念的引人为几何问题代数化奠定了基础.
类似地,在空间选定一点O和一个单位正交基底{i,j,k }.以点О为原点,分别以i,j,k的方向为正方向、以它们的长为单位长度建立三条数轴:z轴、y轴、z轴,它们都叫做坐标轴.这时我们就建立了一个空间直角坐标系Oxyz
在空间直角坐标系中O叫做原点,i,j,k都叫做坐标向量,通过每两个坐标轴的平面叫做坐标平面,分别称为Oxy平面,Oyz平面,Ozx平面,它们把空间分成八个部分.
画空间直角坐标系Ozyz时,一般使∠xOy =135°(或45°),∠yOz=90°.在空间直角坐标系中,让右手拇指指向x轴的正方向,食指指向y轴的正方向,如果中指指向z轴的正方向,则称这个坐标系为右手直角坐标系.本书建立的坐标系都是右手直角坐标系.
一、空间中点的坐标表示
2.空间中点和向量的坐标表示
二、空间中向量的坐标表示
空间直角坐标系中一些特殊的点
1.空间直角坐标系中坐标轴、坐标平面上的点的坐标
2.空间直角坐标系中对称点的坐标(关于谁对称,谁保持不变,其余坐标相反)
(1)点(a,b,c)关于原点O的对称点为(-a,-b,-c);(2)点(a,b,c)关于x轴的对称点为(a,-b,-c);(3)点(a,b,c)关于y轴的对称点为(-a,b,-c);(4)点(a,b,c)关于z轴的对称点为(-a,-b,c);(5)点(a,b,c)关于Oxy平面的对称点为(a,b,-c);(6)点(a,b,c)关于Oyz平面的对称点为(-a,b,c);(7)点(a,b,c)关于Ozx平面的对称点为(a,-b,c).
用坐标表示空间向量的步骤如下:
如图,点A(0,0,a),在四面体ABCD中,AB⊥平面BCD,BC=CD,∠BCD=90°,∠ADB=30°,E,F分别是AC,AD的中点,求点D,C,E,F的坐标.素养点睛:考查直观想象、数学建模的核心素养.
题型1 空间中点的坐标表示
求某点P的坐标的方法先找到点P在Oxy平面上的射影M,过点M向x轴作垂线,确定垂足N.其中|ON|,|NM|,|MP|即为点P坐标的绝对值,再按O→N→M→P确定相应坐标的符号(与坐标轴同向为正,反向为负),即可得到相应的点P的坐标.提醒:求某点的坐标时,一般先找出这一点在某一坐标平面上的射影,确定其两个坐标,再找出它在另一轴上的射影(或者通过它到这个坐标平面的距离加上正负号),确定第三个坐标.
(变式)1.如图,在底面是菱形的直四棱柱ABCD-A1B1C1D1中,底面的边长为a,且∠A1B1C1=120°,侧棱长为2a,在空间直角坐标系中确定点A1,D,C的坐标.
2.(拓展)如图,在矩形ABCD中,|AD|=3,|AB|=4,将矩形ABCD沿对角线BD折起,使得平面BCD⊥平面ABD.现以D为原点,DB作为y轴的正方向,建立如图所示的空间直角坐标系,此时点A恰好在Dxy坐标平面内.试求A,C两点的坐标.
解:如图,由于平面BCD⊥平面ABD,从面BCD引棱DB的垂线CF,即为平面ABD的垂线.同理可作AE,即为平面BCD的垂线.因为矩形ABCD中,|AD|=3,|AB|=4,所以BD=5.在直角三角形DAB与直角三角形DCB中,由射影定理知DA2=DE×BD,
素养点睛:考查直观想象、数学建模的核心素养.【答案】C【解析】因为点A和点B的纵坐标相同,横坐标和竖坐标都互为相反数,所以点A和点B关于y轴对称.
探究2 求关于坐标轴平面对称的点 点(2,3,2)关于平面xOy的对称点的坐标为( )A.(2,3,-2)B.(-2,-3,-2)C.(-2,-3,2)D.(2,-3,-2)
素养点睛:考查直观想象、数学建模的核心素养.【答案】A【解析】因为关于平面Oxy的对称点的横坐标、纵坐标不变,而竖坐标互为相反数,所以点(2,3,2)关于平面Oxy的对称点的坐标为(2,3,-2).
素养点睛:考查直观想象、数学建模的核心素养.【答案】A【解析】由线段中点坐标公式,则A(3,-2,4)关于点(0,1,-3)的对称点的坐标是(0×2-3,1×2+2,-3×2-4)=(-3,4,-10).
在空间直角坐标系中,点P(x,y,z)关于坐标轴和坐标平面的对称点的坐标特点如下:
其中的记忆方法为“关于谁谁不变,其余的相反”.如关于横轴(x轴)的对称点,横坐标不变,纵坐标、竖坐标变为原来的相反数;关于Oxy坐标平面的对称点,横坐标、纵坐标不变,竖坐标变为原来的相反数.
1.已知点P(2,3,-1)关于坐标平面xOy的对称点为P1,点P1关于坐标平面Oyz的对称点为P2,点P2关于z轴的对称点为P3,则点P3的坐标为________.【答案】(2,-3,1)【解析】点P(2,3,-1)关于坐标平面Oxy的对称点P1的坐标为(2,3,1),点P1关于坐标平面Oyz的对称点P2的坐标为(-2,3,1),点P2关于z轴的对称点P3的坐标是(2,-3,1).
2.如图,正方体AOCD-A′B′C′D′的棱长为2,则图中的点M关于y轴对称的点的坐标为________.
【答案】(-1,-2,-1)【解析】因为D(2,-2,0),C′(0,-2,2),所以线段DC′的中点M的坐标为(1,-2,1),所以点M关于y轴的对称点的坐标为(-1,-2,-1).
素养点睛:考查直观想象、数学建模的核心素养.
求向量的坐标时,首先要建立空间直角坐标系、确定单位正交基底,然后根据向量的运算将向量用单位正交基底表示,进而可得所求向量的坐标,这是将向量问题数量化的基础.
解:∵PA=AD=AB,且PA⊥平面ABCD,AD⊥AB,∴以DA,AB,AP所在直线为x轴、y轴、z轴建立空间直角坐标系Axyz,如图所示.
解析 当三个坐标均相反时,两点关于原点对称.
四棱锥V-ABCD中,底面是边长为4且∠ABC=60°的菱形,顶点V在底面的射影是底面对角线的交点O,VO=3,建立正确的坐标系求各点的坐标时,下列建系方式正确的是( )A.(2)(3) B.(2)(4)C.(1)(4) D.(1)(2)(4)
易错警示 求空间中点的坐标的建系问题
错解:选D.在空间直角坐标系中,三个坐标轴的位置关系是两两垂直.由于菱形的对角线互相垂直,且VO垂直于底面,则VO,AO,BO和VO,BO,CO两两互相垂直;(3)中的x轴和y轴不垂直,(1)(3)(4)中三个坐标轴两两互相垂直.错解分析:错误的根本原因是忽略了坐标轴应两两互相垂直而错选.正解:选B.在空间直角坐标系中,三个坐标轴的位置关系是两两垂直.由于菱形的对角线互相垂直,且VO垂直于底面,则VO,AO,BO和VO,BO,CO两两互相垂直;(1)中的x轴和y轴不垂直,(3)中三个坐标轴都不垂直,(2)(4)中三个坐标轴两两互相垂直.
防范措施:1.准确把握建系原则空间直角坐标系是右手直角坐标系,故三个坐标轴应两两互相垂直,如本题(1)(3)中x轴和y轴不垂直,故不能构成空间直角坐标系.2.正确使用几何图形的性质建立合理的空间直角坐标系要寻找互相垂直的坐标轴,垂直关系往往用到平面和立体图形的性质,寻找垂直关系的关键是正确使用几何图形的性质.如本题(2)(4)利用了菱形的对角线互相垂直这一性质,从而确定出x轴与y轴互相垂直.
1.在空间直角坐标系中标出下列各点:A(0,2,4),B(1,0,5), C(0,2,0),D(1,3,4).
解析:1.解析建立如图所示的空间直角坐标系,表示各点如图.
2.在空间直角坐标系Oxyz中,(1)哪个坐标平面与x轴垂直?哪个坐标平面与y轴垂直?哪个坐标平面与z轴垂直?(2)写出点P(2,3,4)在三个坐标平面内的射影的坐标(3)写出点P(1,3,5)关于原点成中心对称的点的坐标
数学选择性必修 第一册1.4 空间向量的应用备课课件ppt: 这是一份数学选择性必修 第一册<a href="/sx/tb_c4000323_t3/?tag_id=26" target="_blank">1.4 空间向量的应用备课课件ppt</a>,共60页。PPT课件主要包含了新知探究,情景导入,学习目标,课堂小结,分层练习,错因分析,复习回顾,向量的模,空间向量的模,向量的投影等内容,欢迎下载使用。
高中数学第一章 空间向量与立体几何1.4 空间向量的应用备课ppt课件: 这是一份高中数学<a href="/sx/tb_c4000323_t3/?tag_id=26" target="_blank">第一章 空间向量与立体几何1.4 空间向量的应用备课ppt课件</a>,共60页。PPT课件主要包含了方向向量,法向量,空间向量,立体几何,复习回顾,新知探究,概念归纳,典例剖析,练一练,课本练习等内容,欢迎下载使用。
高中数学人教A版 (2019)选择性必修 第一册第一章 空间向量与立体几何1.4 空间向量的应用备课课件ppt: 这是一份高中数学人教A版 (2019)选择性必修 第一册<a href="/sx/tb_c4000323_t3/?tag_id=26" target="_blank">第一章 空间向量与立体几何1.4 空间向量的应用备课课件ppt</a>,共49页。PPT课件主要包含了复习回顾,方向向量,法向量,空间向量,立体几何,新知探究,概念归纳,典例剖析,练一练,课本练习等内容,欢迎下载使用。