高考数学一轮复习知识点讲解+真题测试专题9.5抛物线(真题测试)(原卷版+解析)
展开1.(2023·全国·高三专题练习)已知抛物线上一点到轴的距离是2,则点到焦点的距离为( )
A.B.2C.D.3
2.(2023·全国·高三专题练习)抛物线的焦点到其准线的距离为( )
A.B.C.2D.4
3.(2023·全国·高考真题(文))设F为抛物线的焦点,点A在C上,点,若,则( )
A.2B.C.3D.
4.(2023·全国·高考真题)抛物线的焦点到直线的距离为,则( )
A.1B.2C.D.4
5.(2023·北京·高考真题)设抛物线的顶点为,焦点为,准线为.是抛物线上异于的一点,过作于,则线段的垂直平分线( ).
A.经过点B.经过点
C.平行于直线D.垂直于直线
6.(2023·全国·高考真题(文))若抛物线y2=2px(p>0)的焦点是椭圆的一个焦点,则p=( )
A.2B.3
C.4D.8
7.(山东·高考真题(文))已知抛物线,过其焦点且斜率为1的直线交抛物线于 两点,若线段的中点的纵坐标为2,则该抛物线的准线方程为( )
A.B.
C.D.
8.(2023·全国·高考真题(理))已知F为抛物线C:y2=4x的焦点,过F作两条互相垂直的直线l1,l2,直线l1与C交于A、B两点,直线l2与C交于D、E两点,则|AB|+|DE|的最小值为( )
A.16B.14C.12D.10
二、多选题
9.(2023·全国·高考真题)已知O为坐标原点,点在抛物线上,过点的直线交C于P,Q两点,则( )
A.C的准线为B.直线AB与C相切
C.D.
10.(2023·全国·高考真题)已知O为坐标原点,过抛物线焦点F的直线与C交于A,B两点,其中A在第一象限,点,若,则( )
A.直线的斜率为B.
C.D.
11.(2023·全国·高三专题练习)已知为坐标原点,抛物线的方程为,的焦点为,直线与交于,两点,且的中点到轴的距离为2,则下列结论正确的是( )
A.的准线方程为
B.的最大值为6
C.若,则直线的方程为
D.若,则面积的最小值为16
12.(2023·全国·高三专题练习)已知抛物线:,过其准线上的点作的两条切线,切点分别为,,下列说法正确的是( )
A.B.当时,
C.当时,直线的斜率为2D.面积的最小值为4
三、填空题
13.(2023·北京·高考真题(文))已知直线l过点(1,0)且垂直于?轴,若l被抛物线截得的线段长为4,则抛物线的焦点坐标为_________.
14.(2023·全国·高三专题练习)已知抛物线:的焦点为,为上一点且在第一象限,以为圆心,线段的长度为半径的圆交的准线于,两点,且,,三点共线,则______.
15.(2023·山东·高考真题)已知抛物线的顶点在坐标原点,焦点与双曲线的左焦点重合,若两曲线相交于,两点,且线段的中点是点,则该双曲线的离心率等于______.
16.(2023·北京·高考真题)已知抛物线的焦点为,点在抛物线上,垂直轴与于点.若,则点的横坐标为_______; 的面积为_______.
四、解答题
17.(2023·北京·高考真题(理))已知抛物线C:y2=2px过点P(1,1).过点作直线l与抛物线C交于不同的两点M,N,过点M作x轴的垂线分别与直线OP,ON交于点A,B,其中O为原点.
(1)求抛物线C的方程,并求其焦点坐标和准线方程;
(2)求证:A为线段BM的中点.
18.(2023·全国·高考真题(理))已知抛物线C:y2=3x的焦点为F,斜率为的直线l与C的交点为A,B,与x轴的交点为P.
(1)若|AF|+|BF|=4,求l的方程;
(2)若,求|AB|.
19.(2023·北京·高考真题(理))已知抛物线C:x2=−2py经过点(2,−1).
(Ⅰ)求抛物线C的方程及其准线方程;
(Ⅱ)设O为原点,过抛物线C的焦点作斜率不为0的直线l交抛物线C于两点M,N,直线y=−1分别交直线OM,ON于点A和点B.求证:以AB为直径的圆经过y轴上的两个定点.
20.(2023·全国·高考真题(理))设抛物线的焦点为F,点,过F的直线交C于M,N两点.当直线MD垂直于x轴时,.
(1)求C的方程;
(2)设直线与C的另一个交点分别为A,B,记直线的倾斜角分别为.当取得最大值时,求直线AB的方程.
21.(2023·全国·高考真题(理))已知椭圆C1:(a>b>0)的右焦点F与抛物线C2的焦点重合,C1的中心与C2的顶点重合.过F且与x轴垂直的直线交C1于A,B两点,交C2于C,D两点,且|CD|=|AB|.
(1)求C1的离心率;
(2)设M是C1与C2的公共点,若|MF|=5,求C1与C2的标准方程.
22.(2023·全国·高考真题(文))已知抛物线的焦点F到准线的距离为2.
(1)求C的方程;
(2)已知O为坐标原点,点P在C上,点Q满足,求直线斜率的最大值.
专题9.5 抛物线(真题测试)
一、单选题
1.(2023·全国·高三专题练习)已知抛物线上一点到轴的距离是2,则点到焦点的距离为( )
A.B.2C.D.3
答案:B
分析:有题意可知,由焦点则可求出点到焦点的距离.
【详解】到轴的距离是2,可得,焦点
则点到焦点的距离为2.
故选:B.
2.(2023·全国·高三专题练习)抛物线的焦点到其准线的距离为( )
A.B.C.2D.4
答案:C
分析:将抛物线方程化为标准式,即可得到,再根据的几何意义得解;
【详解】解:抛物线,即,则,所以,
所以抛物线的焦点到其准线的距离为.
故选:C
3.(2023·全国·高考真题(文))设F为抛物线的焦点,点A在C上,点,若,则( )
A.2B.C.3D.
答案:B
分析:根据抛物线上的点到焦点和准线的距离相等,从而求得点的横坐标,进而求得点坐标,即可得到答案.
【详解】由题意得,,则,
即点到准线的距离为2,所以点的横坐标为,
不妨设点在轴上方,代入得,,
所以.
故选:B
4.(2023·全国·高考真题)抛物线的焦点到直线的距离为,则( )
A.1B.2C.D.4
答案:B
分析:首先确定抛物线的焦点坐标,然后结合点到直线距离公式可得的值.
【详解】抛物线的焦点坐标为,
其到直线的距离:,
解得:(舍去).
故选:B.
5.(2023·北京·高考真题)设抛物线的顶点为,焦点为,准线为.是抛物线上异于的一点,过作于,则线段的垂直平分线( ).
A.经过点B.经过点
C.平行于直线D.垂直于直线
答案:B
分析:依据题意不妨作出焦点在轴上的开口向右的抛物线,根据垂直平分线的定义和抛物线的定义可知,线段的垂直平分线经过点,即求解.
【详解】如图所示:.
因为线段的垂直平分线上的点到的距离相等,又点在抛物线上,根据定义可知,,所以线段的垂直平分线经过点.
故选:B.
6.(2023·全国·高考真题(文))若抛物线y2=2px(p>0)的焦点是椭圆的一个焦点,则p=( )
A.2B.3
C.4D.8
答案:D
分析:利用抛物线与椭圆有共同的焦点即可列出关于的方程,即可解出,或者利用检验排除的方法,如时,抛物线焦点为(1,0),椭圆焦点为(±2,0),排除A,同样可排除B,C,故选D.
【详解】因为抛物线的焦点是椭圆的一个焦点,所以,解得,故选D.
7.(山东·高考真题(文))已知抛物线,过其焦点且斜率为1的直线交抛物线于 两点,若线段的中点的纵坐标为2,则该抛物线的准线方程为( )
A.B.
C.D.
答案:B
【详解】∵y2=2px的焦点坐标为,
∴过焦点且斜率为1的直线方程为y=x-,即x=y+,将其代入y2=2px得y2=2py+p2,即y2-2py-p2=0.设A(x1,y1),B(x2,y2),则y1+y2=2p,∴=p=2,∴抛物线的方程为y2=4x,其准线方程为x=-1.故选B.
8.(2023·全国·高考真题(理))已知F为抛物线C:y2=4x的焦点,过F作两条互相垂直的直线l1,l2,直线l1与C交于A、B两点,直线l2与C交于D、E两点,则|AB|+|DE|的最小值为( )
A.16B.14C.12D.10
答案:A
【详解】设,直线的方程为,联立方程,得,∴,同理直线与抛物线的交点满足,由抛物线定义可知
,当且仅当(或)时,取等号.
点睛:对于抛物线弦长问题,要重点抓住抛物线定义,到定点的距离要想到转化到准线上,另外,直线与抛物线联立,求判别式,利用根与系数的关系是通法,需要重点掌握.考查最值问题时要能想到用函数方法和基本不等式进行解决.此题还可以利用弦长的倾斜角表示,设直线的倾斜角为,则,则,所以
.
二、多选题
9.(2023·全国·高考真题)已知O为坐标原点,点在抛物线上,过点的直线交C于P,Q两点,则( )
A.C的准线为B.直线AB与C相切
C.D.
答案:BCD
分析:求出抛物线方程可判断A,联立AB与抛物线的方程求交点可判断B,利用距离公式及弦长公式可判断C、D.
【详解】将点的代入抛物线方程得,所以抛物线方程为,故准线方程为,A错误;
,所以直线的方程为,
联立,可得,解得,故B正确;
设过的直线为,若直线与轴重合,则直线与抛物线只有一个交点,
所以,直线的斜率存在,设其方程为,,
联立,得,
所以,所以或,,
又,,
所以,故C正确;
因为,,
所以,而,故D正确.
故选:BCD
10.(2023·全国·高考真题)已知O为坐标原点,过抛物线焦点F的直线与C交于A,B两点,其中A在第一象限,点,若,则( )
A.直线的斜率为B.
C.D.
答案:ACD
分析:由及抛物线方程求得,再由斜率公式即可判断A选项;表示出直线的方程,联立抛物线求得,即可求出判断B选项;由抛物线的定义求出即可判断C选项;由,求得,为钝角即可判断D选项.
【详解】
对于A,易得,由可得点在的垂直平分线上,则点横坐标为,
代入抛物线可得,则,则直线的斜率为,A正确;
对于B,由斜率为可得直线的方程为,联立抛物线方程得,
设,则,则,代入抛物线得,解得,则,
则,B错误;
对于C,由抛物线定义知:,C正确;
对于D,,则为钝角,
又,则为钝角,
又,则,D正确.
故选:ACD.
11.(2023·全国·高三专题练习)已知为坐标原点,抛物线的方程为,的焦点为,直线与交于,两点,且的中点到轴的距离为2,则下列结论正确的是( )
A.的准线方程为
B.的最大值为6
C.若,则直线的方程为
D.若,则面积的最小值为16
答案:BCD
分析:直接求出准线方程即可判断A选项;由以及抛物线的定义结合即可判断B选项;设出直线的方程为,联立抛物线,由解出点坐标,即可判断C选项;由求得直线恒过点结合即可求出面积最小值,即可判断D选项.
【详解】
由题意知的标准方程为,故的准线方程为, A错误;
设的中点为,分别过点,,作准线的垂线,垂足分别为,,,
因为到轴的距离为2,所以.
由抛物线的定义知,,所以.
因为,所以,所以B正确;
由得直线过点,直线的斜率存在,
设直线的方程为,联立方程得化简得,
则.由于,所以,得,
得,所以,
所以,直线的方程为,故C正确;
设,,由,得,又
所以,由题意知,所以.
又,故直线的方程为.
由于,所以,
则直线恒过点,所以,
所以面积的是小值为16,故D正确.
故选:BCD.
12.(2023·全国·高三专题练习)已知抛物线:,过其准线上的点作的两条切线,切点分别为,,下列说法正确的是( )
A.B.当时,
C.当时,直线的斜率为2D.面积的最小值为4
答案:ABD
分析:选项A:由点在准线上,可求出,从而可判断;
选项B:设直线与抛物线方程联立,由韦达定理可判断;
选项C:设,分别求出,方程,根据方程结构可判断;
选项D:先同C求得直线的方程,再表达出的面积关于的表达式,进而求得面积的最大值即可
【详解】对A,易知准线方程为,∴,:,故选项A正确.
对B,设直线,代入,得,当直线与相切时,有,即,设,斜率分别为,,易知,是上述方程两根,故,故.故选项B正确.
对C,设,,其中,.则:,即.代入点,得,同理可得,
故:,故. 故选项C不正确.
对D,同C,切线方程:;:,代入点有,,故直线的方程为,即,联立有,则,故,又到的距离,故,故当时的面积小值为,故D正确;
故选:ABD
三、填空题
13.(2023·北京·高考真题(文))已知直线l过点(1,0)且垂直于?轴,若l被抛物线截得的线段长为4,则抛物线的焦点坐标为_________.
答案:
【详解】分析:根据题干描述画出相应图形,分析可得抛物线经过点,将点坐标代入可求参数的值,进而可求焦点坐标.
详细:由题意可得,点在抛物线上,将代入中,
解得:,,
由抛物线方程可得:,
焦点坐标为.
14.(2023·全国·高三专题练习)已知抛物线:的焦点为,为上一点且在第一象限,以为圆心,线段的长度为半径的圆交的准线于,两点,且,,三点共线,则______.
答案:6
分析:根据圆的几何性质以及抛物线的定义即可解出.
【详解】如图所示,连接.因为,,三点共线,所以为圆的直径,所以,
点到抛物线的准线的距离为3,则易知,由抛物线定义知.
故答案为:6.
15.(2023·山东·高考真题)已知抛物线的顶点在坐标原点,焦点与双曲线的左焦点重合,若两曲线相交于,两点,且线段的中点是点,则该双曲线的离心率等于______.
答案:
分析:利用抛物线的性质,得到M的坐标,再带入到双曲线方程中,即可求解.
【详解】由题意知:
抛物线方程为:
在抛物线上,所以
在双曲线上,
,又,
故答案为:
16.(2023·北京·高考真题)已知抛物线的焦点为,点在抛物线上,垂直轴与于点.若,则点的横坐标为_______; 的面积为_______.
答案: 5
分析:根据焦半径公式可求的横坐标,求出纵坐标后可求.
【详解】因为抛物线的方程为,故且.
因为,,解得,故,
所以,
故答案为:5;.
四、解答题
17.(2023·北京·高考真题(理))已知抛物线C:y2=2px过点P(1,1).过点作直线l与抛物线C交于不同的两点M,N,过点M作x轴的垂线分别与直线OP,ON交于点A,B,其中O为原点.
(1)求抛物线C的方程,并求其焦点坐标和准线方程;
(2)求证:A为线段BM的中点.
答案:(1)抛物线C的焦点坐标为 ,准线方程为x=-;(2)见解析.
【详解】试题分析:(Ⅰ)代入点求得抛物线的方程,根据方程表示焦点坐标和准线方程;(Ⅱ)设直线l的方程为(),与抛物线方程联立,再由根与系数的关系,及直线ON的方程为,联立求得点的坐标为,再证明.
试题解析:(Ⅰ)由抛物线C:过点P(1,1),得.
所以抛物线C的方程为.
抛物线C的焦点坐标为(,0),准线方程为.
(Ⅱ)由题意,设直线l的方程为(),l与抛物线C的交点为,.
由,得.
则,.
因为点P的坐标为(1,1),所以直线OP的方程为,点A的坐标为.
直线ON的方程为,点B的坐标为.
因为
,
所以.
故A为线段BM的中点.
18.(2023·全国·高考真题(理))已知抛物线C:y2=3x的焦点为F,斜率为的直线l与C的交点为A,B,与x轴的交点为P.
(1)若|AF|+|BF|=4,求l的方程;
(2)若,求|AB|.
答案:(1);(2).
分析:(1)设直线:,,;根据抛物线焦半径公式可得;联立直线方程与抛物线方程,利用韦达定理可构造关于的方程,解方程求得结果;(2)设直线:;联立直线方程与抛物线方程,得到韦达定理的形式;利用可得,结合韦达定理可求得;根据弦长公式可求得结果.
【详解】(1)设直线方程为:,,
由抛物线焦半径公式可知:
联立得:
则
,解得:
直线的方程为:,即:
(2)设,则可设直线方程为:
联立得:
则
,
,
则
19.(2023·北京·高考真题(理))已知抛物线C:x2=−2py经过点(2,−1).
(Ⅰ)求抛物线C的方程及其准线方程;
(Ⅱ)设O为原点,过抛物线C的焦点作斜率不为0的直线l交抛物线C于两点M,N,直线y=−1分别交直线OM,ON于点A和点B.求证:以AB为直径的圆经过y轴上的两个定点.
答案:(Ⅰ) ,;
(Ⅱ)见解析.
分析:(Ⅰ)由题意结合点的坐标可得抛物线方程,进一步可得准线方程;
(Ⅱ)联立准线方程和抛物线方程,结合韦达定理可得圆心坐标和圆的半径,从而确定圆的方程,最后令x=0即可证得题中的结论.
【详解】(Ⅰ)将点代入抛物线方程:可得:,
故抛物线方程为:,其准线方程为:.
(Ⅱ)很明显直线的斜率存在,焦点坐标为,
设直线方程为,与抛物线方程联立可得:.
故:.
设,则,
直线的方程为,与联立可得:,同理可得,
易知以AB为直径的圆的圆心坐标为:,圆的半径为:,
且:,,
则圆的方程为:,
令整理可得:,解得:,
即以AB为直径的圆经过y轴上的两个定点.
20.(2023·全国·高考真题(理))设抛物线的焦点为F,点,过F的直线交C于M,N两点.当直线MD垂直于x轴时,.
(1)求C的方程;
(2)设直线与C的另一个交点分别为A,B,记直线的倾斜角分别为.当取得最大值时,求直线AB的方程.
答案:(1);
(2).
分析:(1)由抛物线的定义可得,即可得解;
(2)设点的坐标及直线,由韦达定理及斜率公式可得,再由差角的正切公式及基本不等式可得,设直线,结合韦达定理可解.
(1)
抛物线的准线为,当与x轴垂直时,点M的横坐标为p,
此时,所以,
所以抛物线C的方程为;
(2)
设,直线,
由可得,,
由斜率公式可得,,
直线,代入抛物线方程可得,
,所以,同理可得,
所以
又因为直线MN、AB的倾斜角分别为,
所以,
若要使最大,则,
设,则,
当且仅当即时,等号成立,
所以当最大时,,设直线,
代入抛物线方程可得,
,所以,
所以直线.
21.(2023·全国·高考真题(理))已知椭圆C1:(a>b>0)的右焦点F与抛物线C2的焦点重合,C1的中心与C2的顶点重合.过F且与x轴垂直的直线交C1于A,B两点,交C2于C,D两点,且|CD|=|AB|.
(1)求C1的离心率;
(2)设M是C1与C2的公共点,若|MF|=5,求C1与C2的标准方程.
答案:(1);(2),.
分析:(1)求出、,利用可得出关于、的齐次等式,可解得椭圆的离心率的值;
(2)[方法四]由(1)可得出的方程为,联立曲线与的方程,求出点的坐标,利用抛物线的定义结合可求得的值,进而可得出与的标准方程.
【详解】(1),轴且与椭圆相交于、两点,
则直线的方程为,
联立,解得,则,
抛物线的方程为,联立,
解得,,
,即,,
即,即,
,解得,因此,椭圆的离心率为;
(2)[方法一]:椭圆的第二定义
由椭圆的第二定义知,则有,
所以,即.
又由,得.
从而,解得.
所以.
故椭圆与抛物线的标准方程分别是.
[方法二]:圆锥曲线统一的极坐标公式
以为极点,x轴的正半轴为极轴,建立极坐标系.
由(Ⅰ)知,又由圆锥曲线统一的极坐标公式,得,由,得,两式联立解得.
故的标准方程为,的标准方程为.
[方法三]:参数方程
由(1)知,椭圆的方程为,
所以的参数方程为x=2c⋅csθ,y=3c⋅sinθ(为参数),
将它代入抛物线的方程并化简得,
解得或(舍去),
所以,即点M的坐标为.
又,所以由抛物线焦半径公式有,即,解得.
故的标准方程为,的标准方程为.
[方法四]【最优解】:利用韦达定理
由(1)知,,椭圆的方程为,
联立,消去并整理得,
解得或(舍去),
由抛物线的定义可得,解得.
因此,曲线的标准方程为,
曲线的标准方程为.
【整体点评】(2)方法一:椭圆的第二定义是联系准线与离心率的重要工具,涉及离心率的问题不妨考虑使用第二定义,很多时候会使得问题简单明了.
方法二:圆锥曲线统一的极坐标公式充分体现了圆锥曲线的统一特征,同时它也是解决圆锥曲线问题的一个不错的思考方向.
方法三:参数方程是一种重要的数学工具,它将圆锥曲线的问题转化为三角函数的问题,使得原来抽象的问题更加具体化.
方法四:韦达定理是最常用的处理直线与圆锥曲线位置关系的方法,联立方程之后充分利用韦达定理可以达到设而不求的效果.
22.(2023·全国·高考真题(文))已知抛物线的焦点F到准线的距离为2.
(1)求C的方程;
(2)已知O为坐标原点,点P在C上,点Q满足,求直线斜率的最大值.
答案:(1);(2)最大值为.
分析:(1)由抛物线焦点与准线的距离即可得解;
(2)设,由平面向量的知识可得,进而可得,再由斜率公式及基本不等式即可得解.
【详解】(1)抛物线的焦点,准线方程为,
由题意,该抛物线焦点到准线的距离为,
所以该抛物线的方程为;
(2)[方法一]:轨迹方程+基本不等式法
设,则,
所以,
由在抛物线上可得,即,
据此整理可得点的轨迹方程为,
所以直线的斜率,
当时,;
当时,,
当时,因为,
此时,当且仅当,即时,等号成立;
当时,;
综上,直线的斜率的最大值为.
[方法二]:【最优解】轨迹方程+数形结合法
同方法一得到点Q的轨迹方程为.
设直线的方程为,则当直线与抛物线相切时,其斜率k取到最值.联立得,其判别式,解得,所以直线斜率的最大值为.
[方法三]:轨迹方程+换元求最值法
同方法一得点Q的轨迹方程为.
设直线的斜率为k,则.
令,则的对称轴为,所以.故直线斜率的最大值为.
[方法四]:参数+基本不等式法
由题可设.
因为,所以.
于是,所以
则直线的斜率为.
当且仅当,即时等号成立,所以直线斜率的最大值为.
【整体点评】方法一根据向量关系,利用代点法求得Q的轨迹方程,得到直线OQ的斜率关于的表达式,然后利用分类讨论,结合基本不等式求得最大值;
方法二 同方法一得到点Q的轨迹方程,然后利用数形结合法,利用判别式求得直线OQ的斜率的最大值,为最优解;
方法三同方法一求得Q的轨迹方程,得到直线的斜率k的平方关于的表达式,利用换元方法转化为二次函数求得最大值,进而得到直线斜率的最大值;
方法四利用参数法,由题可设,求得x,y关于的参数表达式,得到直线的斜率关于的表达式,结合使用基本不等式,求得直线斜率的最大值.
高考数学一轮复习知识点讲解+真题测试专题9.3椭圆(真题测试)(原卷版+解析): 这是一份高考数学一轮复习知识点讲解+真题测试专题9.3椭圆(真题测试)(原卷版+解析),共22页。试卷主要包含了单选题,多选题,填空题,解答题等内容,欢迎下载使用。
高考数学一轮复习知识点讲解+真题测试专题9.1直线与直线方程(真题测试)(原卷版+解析): 这是一份高考数学一轮复习知识点讲解+真题测试专题9.1直线与直线方程(真题测试)(原卷版+解析),共18页。试卷主要包含了单选题,多选题,填空题,解答题等内容,欢迎下载使用。
高考数学一轮复习知识点讲解+真题测试专题7.6数学归纳法(真题测试)(原卷版+解析): 这是一份高考数学一轮复习知识点讲解+真题测试专题7.6数学归纳法(真题测试)(原卷版+解析),共23页。试卷主要包含了单选题,多选题,填空题,解答题等内容,欢迎下载使用。