高考数学一轮复习知识点讲解+真题测试专题8.8立体几何综合问题(知识点讲解)(原卷版+解析)
展开【核心素养】
以几何体为载体,考查空间几何体中的最值问题、折叠问题以及探索性问题,凸显直观想象、数学运算、逻辑推理的核心素养.
【知识点展示】
(一)空间向量的概念及有关定理
1.空间向量的有关概念
2.空间向量的有关定理
(1)共线向量定理:对空间任意两个向量a,b(b≠0),a∥b的充要条件是存在实数λ,使得a=λb.
(2)共面向量定理:如果两个向量a,b不共线,那么向量p与向量a,b共面的充要条件是存在唯一的有序实数对(x,y),使p=xa+yb.
(3)空间向量基本定理:如果三个向量a,b,c不共面,那么对空间任一向量p,存在有序实数组{x,y,z},使得p=xa+yb+zc,其中,{a,b,c}叫做空间的一个基底.
(二)空间向量的坐标表示及运算
(1)数量积的坐标运算
设a=(a1,a2,a3),b=(b1,b2,b3),
则①a±b=(a1±b1,a2±b2,a3±b3);
②λa=(λa1,λa2,λa3);
③a·b=a1b1+a2b2+a3b3.
(2)共线与垂直的坐标表示
设a=(a1,a2,a3),b=(b1,b2,b3),
则a∥b⇔a=λb⇔a1=λb1,a2=λb2,a3=λb3(λ∈R),
a⊥b⇔a·b=0⇔a1b1+a2b2+a3b3=0(a,b均为非零向量).
(3)模、夹角和距离公式
设a=(a1,a2,a3),b=(b1,b2,b3),
则|a|=eq \r(a·a)=eq \r(a\\al(2,1)+a\\al(2,2)+a\\al(2,3)),
cs〈a,b〉=eq \f(a·b,|a||b|)=eq \f(a1b1+a2b2+a3b3,\r(a\\al(2,1)+a\\al(2,2)+a\\al(2,3))·\r(b\\al(2,1)+b\\al(2,2)+b\\al(2,3))).
设A(a1,b1,c1),B(a2,b2,c2),
则.
(三)异面直线所成的角
①定义:设a,b是两条异面直线,过空间任一点O作直线a′∥a,b′∥b,则a′与b′所夹的锐角或直角叫做a与b所成的角.
②范围:两异面直线所成角θ的取值范围是.
③向量求法:设直线a,b的方向向量为a,b,其夹角为φ,则有.
(四)直线与平面所成角
直线和平面所成角的求法:如图所示,设直线l的方向向量为e,平面α的法向量为n,直线l与平面α所成的角为φ,两向量e与n的夹角为θ,则有sin φ=|cs θ|=eq \f(|e·n|,|e||n|).
(五) 二面角
(1)如图1,AB、CD是二面角α-l-β的两个面内与棱l垂直的直线,则二面角的大小θ=〈,〉.
(2)如图2、3,分别是二面角α-l-β的两个半平面α,β的法向量,则二面角的大小(或).
(六)利用向量求空间距离
点面距的求法:如图,设AB为平面α的一条斜线段,n为平面α的法向量,则B到平面α的距离d=eq \f(|\(AB,\s\up6(→))·n|,|n|).
【常考题型剖析】
题型一: 向量与立体几何中最值问题
例1. (2023·浙江·效实中学模拟预测)已知圆锥的高是底面上圆的直径,,是圆上的动点,是的中点,则直线与平面所成角的正弦值的最大值为( )
A.B.C.D.1
例2.(山东·高考真题(理))如图所示,已知四棱锥P—ABCD,底面ABCD为菱形,PA⊥平面ABCD,∠ABC=60°,E,F分别是BC,PC的中点.
(1)证明:AE⊥PD;
(2)若H为PD上的动点,EH与平面PAD所成最大角的正切值为,求二面角E—AF—C的余弦值.
例3.(2023·全国·高考真题(理))已知直三棱柱中,侧面为正方形,,E,F分别为和的中点,D为棱上的点.
(1)证明:;
(2)当为何值时,面与面所成的二面角的正弦值最小?
【方法技巧】
解决空间图形有关的线段、角、距离、面积、体积等最值问题,一般可以从三方面着手:
一是从问题的几何特征入手,充分利用其几何性质去解决;
二是利用空间几何体的侧面展开图;
三是找出问题中的代数关系,建立目标函数,利用代数方法求目标函数的最值.解题途径很多,在函数建成后,可用一次函数的端点法,二次函数的配方法、公式法,函数有界法(如三角函数等)及高阶函数的拐点导数法等.空间向量法求最值也是要求出目标函数,但是需要先依据题意建立空间直角坐标系,注意建系时使坐标易于求解或表达,然后求目标函数的表达式.
题型二:立体几何“翻折”“折叠”问题
例4.(2023·全国·高考真题(理))如图,四边形为正方形,分别为的中点,以为折痕把折起,使点到达点的位置,且.
(1)证明:平面平面;
(2)求与平面所成角的正弦值.
例5.(2023年高考全国Ⅲ卷理)图1是由矩形ADEB,Rt△ABC和菱形BFGC组成的一个平面图形,其中AB=1,BE=BF=2,∠FBC=60°,将其沿AB,BC折起使得BE与BF重合,连结DG,如图2.
(1)证明:图2中的A,C,G,D四点共面,且平面ABC⊥平面BCGE;
(2)求图2中的二面角B−CG−A的大小.
例6.(2023·辽宁实验中学模拟预测)如图所示正四棱锥
(1)求证:
(2)若沿侧棱将此四棱锥剪开,四个侧面向外旋转,PAD旋转至旋转至如图所示,其中二面角与二面角相同,当时,求平面与所成的锐二面角的余弦值
【总结提升】
解答“翻折”“折叠”问题的两个策略:
1.确定翻折前后变与不变的关系:画好翻折前后的平面图形与立体图形,分清翻折前后图形的位置和数量关系的变与不变.一般地,位于“折痕”同侧的点、线、面之间的位置和数量关系不变,而位于“折痕”两侧的点、线、面之间的位置关系会发生变化;对于不变的关系应在平面图形中处理,而对于变化的关系则要在立体图形中解决
2.确定翻折后关键点的位置:所谓的关键点,是指翻折过程中运动变化的点.因为这些点的位置移动,会带动与其相关的其他的点、线、面的关系变化,以及其他点、线、面之间位置关系与数量关系的变化.只有分析清楚关键点的准确位置,才能以此为参照点,确定其他点、线、面的位置,进而进行有关的证明与计算
题型三:探索性问题----空间角的存在性问题
例7. (2023·湖南·长沙一中高三开学考试)如图,在直三棱柱ABC−A1B1C1中,O,M,N分别为线段BC,AA1,BB1的中点,P为线段AC1上的动点,AO=BC,AB=3,AC=4,AA1=8.
(1)求点C到平面C1MN的距离;
(2)试确定动点P的位置,使线段MP与平面BB1C1C所成角的正弦值最大.
例8.(2023·内蒙古·赤峰红旗中学松山分校模拟预测(理))如图,在四棱锥P—ABCD中,底面ABCD为正方形,底面ABCD,M为线段PC的中点,,N为线段BC上的动点.
(1)证明:平面平面
(2)当点N在线段BC的何位置时,平面MND与平面PAB所成锐二面角的大小为30°?指出点N的位置,并说明理由.
例9.(湖北·高考真题(理))如图1,,,过动点A作,垂足D在线段BC上且异于点B,连接AB,沿将△折起,使(如图2所示).
(Ⅰ)当的长为多少时,三棱锥的体积最大;
(Ⅱ)当三棱锥的体积最大时,设点,分别为棱,的中点,试在棱上确定一点,使得,并求与平面所成角的大小.
【总结提升】
与空间角有关的探索性问题主要为与两异面直线所成的角、直线与平面所成的角和二面角有关的存在性问题,常利用空间向量法求解.求解时,一般把“是否存在”问题转化为“点的坐标是否有解,是否有规定范围内的解”等问题,并注意准确理解和熟练应用夹角公式.
其步骤是:(1)假设存在(或结论成立);(2)建立空间直角坐标系,设(求)出相关空间点的坐标;(3)构建有关向量;(4)结合空间向量,利用线面角或二面角的公式求解;(5)作出判断.
题型四: 探索性问题----线面关系中的存在性问题
例10. (2023·全国·高三专题练习)如图,在四棱锥中,,,点F为棱CD的中点,与E,F相异的动点P在棱EF上.
(1)当P为EF的中点时,证明:平面ADE;
(2)设平面EAD与平面EBC的交线为l,是否存在点P使得平面PBD?若存在,求的值;若不存在,请说明理由.
例11.(2023·北京·高考真题(理))如图,在四棱锥P–ABCD中,PA⊥平面ABCD,AD⊥CD,AD∥BC,PA=AD=CD=2,BC=3.E为PD的中点,点F在PC上,且.
(Ⅰ)求证:CD⊥平面PAD;
(Ⅱ)求二面角F–AE–P的余弦值;
(Ⅲ)设点G在PB上,且.判断直线AG是否在平面AEF内,说明理由.
例12. (2023·北京·高考真题(理))如图,在四棱锥中, 平面平面,.
(1)求证:平面;
(2)求直线与平面所成角的正弦值;
(3)在棱上是否存在点,使得平面?若存在, 求的值;若不存在, 说明理由.
【总结提升】
解决线面关系中存在性问题的策略
对于线面关系中的存在性问题,首先假设存在,然后在该假设条件下,利用向量法进行线面关系的逻辑推理,寻找假设满足的数据或事实,若满足,则肯定假设,若得出矛盾的结论,则否定假设.
名称
定义
空间向量
在空间中,具有大小和方向的量
相等向量
方向相同且模相等的向量
相反向量
方向相反且模相等的向量
共线向量
(或平行向量)
表示空间向量的有向线段所在的直线互相平行或重合的向量
共面向量
平行于同一个平面的向量
专题8.8 立体几何综合问题(知识点讲解)
【知识框架】
【核心素养】
以几何体为载体,考查空间几何体中的最值问题、折叠问题以及探索性问题,凸显直观想象、数学运算、逻辑推理的核心素养.
【知识点展示】
(一)空间向量的概念及有关定理
1.空间向量的有关概念
2.空间向量的有关定理
(1)共线向量定理:对空间任意两个向量a,b(b≠0),a∥b的充要条件是存在实数λ,使得a=λb.
(2)共面向量定理:如果两个向量a,b不共线,那么向量p与向量a,b共面的充要条件是存在唯一的有序实数对(x,y),使p=xa+yb.
(3)空间向量基本定理:如果三个向量a,b,c不共面,那么对空间任一向量p,存在有序实数组{x,y,z},使得p=xa+yb+zc,其中,{a,b,c}叫做空间的一个基底.
(二)空间向量的坐标表示及运算
(1)数量积的坐标运算
设a=(a1,a2,a3),b=(b1,b2,b3),
则①a±b=(a1±b1,a2±b2,a3±b3);
②λa=(λa1,λa2,λa3);
③a·b=a1b1+a2b2+a3b3.
(2)共线与垂直的坐标表示
设a=(a1,a2,a3),b=(b1,b2,b3),
则a∥b⇔a=λb⇔a1=λb1,a2=λb2,a3=λb3(λ∈R),
a⊥b⇔a·b=0⇔a1b1+a2b2+a3b3=0(a,b均为非零向量).
(3)模、夹角和距离公式
设a=(a1,a2,a3),b=(b1,b2,b3),
则|a|=eq \r(a·a)=eq \r(a\\al(2,1)+a\\al(2,2)+a\\al(2,3)),
cs〈a,b〉=eq \f(a·b,|a||b|)=eq \f(a1b1+a2b2+a3b3,\r(a\\al(2,1)+a\\al(2,2)+a\\al(2,3))·\r(b\\al(2,1)+b\\al(2,2)+b\\al(2,3))).
设A(a1,b1,c1),B(a2,b2,c2),
则.
(三)异面直线所成的角
①定义:设a,b是两条异面直线,过空间任一点O作直线a′∥a,b′∥b,则a′与b′所夹的锐角或直角叫做a与b所成的角.
②范围:两异面直线所成角θ的取值范围是.
③向量求法:设直线a,b的方向向量为a,b,其夹角为φ,则有.
(四)直线与平面所成角
直线和平面所成角的求法:如图所示,设直线l的方向向量为e,平面α的法向量为n,直线l与平面α所成的角为φ,两向量e与n的夹角为θ,则有sin φ=|cs θ|=eq \f(|e·n|,|e||n|).
(五) 二面角
(1)如图1,AB、CD是二面角α-l-β的两个面内与棱l垂直的直线,则二面角的大小θ=〈,〉.
(2)如图2、3,分别是二面角α-l-β的两个半平面α,β的法向量,则二面角的大小(或).
(六)利用向量求空间距离
点面距的求法:如图,设AB为平面α的一条斜线段,n为平面α的法向量,则B到平面α的距离d=eq \f(|\(AB,\s\up6(→))·n|,|n|).
【常考题型剖析】
题型一: 向量与立体几何中最值问题
例1. (2023·浙江·效实中学模拟预测)已知圆锥的高是底面上圆的直径,,是圆上的动点,是的中点,则直线与平面所成角的正弦值的最大值为( )
A.B.C.D.1
答案:C
【解析】
分析:
做交圆上一点,以为原点,所在的直线为轴的正方向建立空间直角坐标系,设,则,且, 求出、平面的一个法向量坐标,设直线与平面所成的角为,可得,令,利用导数可得的最值,从而得到答案.
【详解】
做交圆上一点,
以为原点,所在的直线为轴的正方向建立空间直角坐标系,
则,,,,
设,则,且,
当时,与重合,此时构不成平面,
当时,与重合,此时构不成平面,
即,,
所以,,,
设平面的一个法向量为,
所以,即,令,则,
所以,设直线与平面所成的角为,
,
令,
当时,,单调递增,
当时,,单调递减,所以,
,
直线与平面所成角的正弦值的最大值为.
故选:C.
例2.(山东·高考真题(理))如图所示,已知四棱锥P—ABCD,底面ABCD为菱形,PA⊥平面ABCD,∠ABC=60°,E,F分别是BC,PC的中点.
(1)证明:AE⊥PD;
(2)若H为PD上的动点,EH与平面PAD所成最大角的正切值为,求二面角E—AF—C的余弦值.
答案:(1)证明略(2)所求二面角的余弦值为
【解析】
【详解】
(1) 由四边形ABCD为菱形,∠ABC=60°,
可得△ABC为正三角形.
因为E为BC的中点,所以AE⊥BC.
又BC∥AD,因此AE⊥AD.
因为PA⊥平面ABCD,AE平面ABCD,所以PA⊥AE.
而PA平面PAD,AD平面PAD且PA∩AD=A,
所以AE⊥平面PAD.又PD平面PAD,
所以AE⊥PD.
(2) 如图所示,设AB=2,H为PD上任意一点,连结AH、EH,
由(1)知,AE⊥平面PAD,
则∠EHA为EH与平面PAD所成的角.
在Rt△EAH中,AE=,
所以,当AH最短时,∠EHA最大,
即当AH⊥PD时,∠EHA最大.
此时,tan∠EHA===,
因此AH=.又AD=2,
所以∠ADH=45°,所以PA=2.
方法一 因为PA⊥平面ABCD,PA平面PAC,
所以,平面PAC⊥平面ABCD.
过E作EO⊥AC于O,则EO⊥平面PAC,
过O作OS⊥AF于S,连接ES,
则∠ESO为二面角E—AF—C的平面角.
在Rt△AOE中,EO=AE·sin30°=,
AO=AE·cs30°=,又F是PC的中点,
在Rt△ASO中,SO=AO·sin45°=,
又SE===,
在Rt△ESO中,cs∠ESO===,
即所求二面角的余弦值为.
方法二 由(1)知AE,AD,AP两两垂直,以A为坐标原点,建立如图所示的空间直角坐标系,
又E、F分别为BC、PC的中点,所以
A(0,0,0),B(,-1,0),C(,1,0),
D(0,2,0),P(0,0,2),E(,0,0),F(,,1),
所以=(,0,0),
=(,,1).
设平面AEF的一法向量为
m=(x1,y1,z1),
因此
取z1=-1,则m=(0,2,-1),
因为BD⊥AC,BD⊥PA,PA∩AC=A,
所以BD⊥平面AFC,
故为平面AFC的一法向量.
又=(-,3,0),
所以cs〈m,〉===.
因此,二面角E—AF—C为锐角,
所以所求二面角的余弦值为
例3.(2023·全国·高考真题(理))已知直三棱柱中,侧面为正方形,,E,F分别为和的中点,D为棱上的点.
(1)证明:;
(2)当为何值时,面与面所成的二面角的正弦值最小?
答案:(1)证明见解析;(2)
【解析】
分析:
(1)方法二:通过已知条件,确定三条互相垂直的直线,建立合适的空间直角坐标系,借助空间向量证明线线垂直;
(2)方法一:建立空间直角坐标系,利用空间向量求出二面角的平面角的余弦值最大,进而可以确定出答案;
【详解】
(1)[方法一]:几何法
因为,所以.
又因为,,所以平面.又因为,构造正方体,如图所示,
过E作的平行线分别与交于其中点,连接,
因为E,F分别为和的中点,所以是BC的中点,
易证,则.
又因为,所以.
又因为,所以平面.
又因为平面,所以.
[方法二] 【最优解】:向量法
因为三棱柱是直三棱柱,底面,
,,,又,平面.所以两两垂直.
以为坐标原点,分别以所在直线为轴建立空间直角坐标系,如图.
,.
由题设().
因为,
所以,所以.
[方法三]:因为,,所以,故,,所以,所以.
(2)[方法一]【最优解】:向量法
设平面的法向量为,
因为,
所以,即.
令,则
因为平面的法向量为,
设平面与平面的二面角的平面角为,
则.
当时,取最小值为,
此时取最大值为.
所以,此时.
[方法二] :几何法
如图所示,延长交的延长线于点S,联结交于点T,则平面平面.
作,垂足为H,因为平面,联结,则为平面与平面所成二面角的平面角.
设,过作交于点G.
由得.
又,即,所以.
又,即,所以.
所以.
则,
所以,当时,.
[方法三]:投影法
如图,联结,
在平面的投影为,记面与面所成的二面角的平面角为,则.
设,在中,.
在中,,过D作的平行线交于点Q.
在中,.
在中,由余弦定理得,,,
,,
当,即,面与面所成的二面角的正弦值最小,最小值为.
【整体点评】
第一问,方法一为常规方法,不过这道题常规方法较为复杂,方法二建立合适的空间直角坐标系,借助空间向量求解是最简单,也是最优解;方法三利用空间向量加减法则及数量积的定义运算进行证明不常用,不过这道题用这种方法过程也很简单,可以开拓学生的思维.
第二问:方法一建立空间直角坐标系,利用空间向量求出二面角的平面角是最常规的方法,也是最优方法;方法二:利用空间线面关系找到,面与面所成的二面角,并求出其正弦值的最小值,不是很容易找到;方法三:利用面在面上的投影三角形的面积与面积之比即为面与面所成的二面角的余弦值,求出余弦值的最小值,进而求出二面角的正弦值最小,非常好的方法,开阔学生的思维.
【方法技巧】
解决空间图形有关的线段、角、距离、面积、体积等最值问题,一般可以从三方面着手:
一是从问题的几何特征入手,充分利用其几何性质去解决;
二是利用空间几何体的侧面展开图;
三是找出问题中的代数关系,建立目标函数,利用代数方法求目标函数的最值.解题途径很多,在函数建成后,可用一次函数的端点法,二次函数的配方法、公式法,函数有界法(如三角函数等)及高阶函数的拐点导数法等.空间向量法求最值也是要求出目标函数,但是需要先依据题意建立空间直角坐标系,注意建系时使坐标易于求解或表达,然后求目标函数的表达式.
题型二:立体几何“翻折”“折叠”问题
例4.(2023·全国·高考真题(理))如图,四边形为正方形,分别为的中点,以为折痕把折起,使点到达点的位置,且.
(1)证明:平面平面;
(2)求与平面所成角的正弦值.
答案:(1)证明见解析;(2).
【解析】
分析:
(1)首先从题的条件中确定相应的垂直关系,即,,又因为,利用线面垂直的判定定理可以得出平面,又平面,利用面面垂直的判定定理证得平面平面;
(2)结合题意,建立相应的空间直角坐标系,正确写出相应的点的坐标,求得平面的法向量,设与平面所成角为,利用线面角的定义,可以求得,得到结果.
【详解】
(1)由已知可得,,,又,所以平面.
又平面,所以平面平面;
(2)作,垂足为.由(1)得,平面.
以为坐标原点,的方向为轴正方向,为单位长,建立如图所示的空间直角坐标系.
由(1)可得,.又,,所以.又,,故.
可得.
则 为平面的法向量.
设与平面所成角为,则.
所以与平面所成角的正弦值为.
例5.(2023年高考全国Ⅲ卷理)图1是由矩形ADEB,Rt△ABC和菱形BFGC组成的一个平面图形,其中AB=1,BE=BF=2,∠FBC=60°,将其沿AB,BC折起使得BE与BF重合,连结DG,如图2.
(1)证明:图2中的A,C,G,D四点共面,且平面ABC⊥平面BCGE;
(2)求图2中的二面角B−CG−A的大小.
答案:(1)见解析;(2).
【解析】(1)由已知得ADBE,CGBE,所以ADCG,故AD,CG确定一个平面,从而A,C,G,D四点共面.
由已知得ABBE,ABBC,故AB平面BCGE.
又因为AB平面ABC,所以平面ABC平面BCGE.
(2)作EHBC,垂足为H.因为EH平面BCGE,平面BCGE平面ABC,所以EH平面ABC.
由已知,菱形BCGE的边长为2,∠EBC=60°,可求得BH=1,EH=.
以H为坐标原点,的方向为x轴的正方向,建立如图所示的空间直角坐标系H–xyz,
则A(–1,1,0),C(1,0,0),G(2,0,),=(1,0,),=(2,–1,0).
设平面ACGD的法向量为n=(x,y,z),则
即
所以可取n=(3,6,–).
又平面BCGE的法向量可取为m=(0,1,0),所以.
因此二面角B–CG–A的大小为30°.
例6.(2023·辽宁实验中学模拟预测)如图所示正四棱锥
(1)求证:
(2)若沿侧棱将此四棱锥剪开,四个侧面向外旋转,PAD旋转至旋转至如图所示,其中二面角与二面角相同,当时,求平面与所成的锐二面角的余弦值
答案:(1)证明见解析
(2)
【解析】
分析:
(1)连接,交于点,连接,面,得,从而证得平面,得线线垂直;
(2)以D为原点,DA为x轴,DC为y轴,过点D且垂直于平面ABCD的直线为z轴建立空间直角坐标系,设是二面角大小为,表示出的坐标,由向量垂直求出,得的坐标,再求出平面与平面的一个法向量,则法向量夹角得二面角.
(1)
证明:连接,交于点,连接,面,平面,
,
又,,平面,所以平面,
又平面,.
(2)
以D为原点,DA为x轴,DC为y轴,过点D且垂直于平面ABCD的直线为z轴建立空间直角坐标系,设点E为DA中点,则,设是中点,则,又,
所以是二面角的平面角,即,
,同理
解得:,,
设为平面的法向量,则 ,, ,
,,取,则,
,,
设为平面的法向量,则 , ,,
,,取,则,,
,
与平面所成的锐二面角的余弦值为.
【总结提升】
解答“翻折”“折叠”问题的两个策略:
1.确定翻折前后变与不变的关系:画好翻折前后的平面图形与立体图形,分清翻折前后图形的位置和数量关系的变与不变.一般地,位于“折痕”同侧的点、线、面之间的位置和数量关系不变,而位于“折痕”两侧的点、线、面之间的位置关系会发生变化;对于不变的关系应在平面图形中处理,而对于变化的关系则要在立体图形中解决
2.确定翻折后关键点的位置:所谓的关键点,是指翻折过程中运动变化的点.因为这些点的位置移动,会带动与其相关的其他的点、线、面的关系变化,以及其他点、线、面之间位置关系与数量关系的变化.只有分析清楚关键点的准确位置,才能以此为参照点,确定其他点、线、面的位置,进而进行有关的证明与计算
题型三:探索性问题----空间角的存在性问题
例7. (2023·湖南·长沙一中高三开学考试)如图,在直三棱柱ABC−A1B1C1中,O,M,N分别为线段BC,AA1,BB1的中点,P为线段AC1上的动点,AO=BC,AB=3,AC=4,AA1=8.
(1)求点C到平面C1MN的距离;
(2)试确定动点P的位置,使线段MP与平面BB1C1C所成角的正弦值最大.
答案:(1)
(2)
【解析】
分析:
(1)利用面面垂直的性质定理可得平面,线面垂直的性质定理可得
,分别为的中点得,再利用勾股定理可得
,再由线面垂直的判定定理可得答案.
(2)以为原点,以为轴建立空间直角坐标系,求出平面的法向量,设,利用可得,再由线面角的向量求法可得
直线与平面所成的角的正弦值,再分、讨论可得答案.
(1)
在中,为中点且,
平面平面,平面平面,
平面,又平面,
分别为的中点,,
在直角和直角中,,
,
,
平面平面,
点到平面的距离为.
(2)
平面,由(1)得三线两两重直,
以为原点,以为轴建立空间直角坐标系如图,
则,
,
设平面的法向量为,
则令得,
设,则,
,
设直线与平面所成的角为,
则,
若,此时,点与重合;
若,令,则,
当,即为的中点时,取得最大值.
例8.(2023·内蒙古·赤峰红旗中学松山分校模拟预测(理))如图,在四棱锥P—ABCD中,底面ABCD为正方形,底面ABCD,M为线段PC的中点,,N为线段BC上的动点.
(1)证明:平面平面
(2)当点N在线段BC的何位置时,平面MND与平面PAB所成锐二面角的大小为30°?指出点N的位置,并说明理由.
答案:(1)证明见解析
(2)点N在线段BC的中点
【解析】
分析:
(1)由底面ABCD,可得,而,可证得平面,从而得,而,所以平面,再由面面垂直的判定定理可得结论,
(2)设,以为原点,以所在的直线分别为轴建立空间直角坐标系,然后利用空间向量求解即可
(1)
证明:因为底面ABCD,底面ABCD,
所以,
因为,,
所以平面,
因为平面,
所以,
因为四边形为正方形,,
所以,
因为在中,,M为线段PC的中点,
所以,
因为,
所以平面,
因为平面,
所以平面平面,
(2)
当点N在线段BC的中点时,平面MND与平面PAB所成锐二面角的大小为30°,理由如下:
因为底面,平面,
所以,
因为,
所以两两垂直,
所以以为原点,以所在的直线分别为轴建立空间直角坐标系,如图所示,
设,则,
设,则,
设为平面的法向量,则
,令,则,
设为平面的法向量,则
,令,则,
因为平面MND与平面PAB所成锐二面角的大小为30°,
所以,
化简得,得,
所以当点N在线段BC的中点时,平面MND与平面PAB所成锐二面角的大小为30°
例9.(湖北·高考真题(理))如图1,,,过动点A作,垂足D在线段BC上且异于点B,连接AB,沿将△折起,使(如图2所示).
(Ⅰ)当的长为多少时,三棱锥的体积最大;
(Ⅱ)当三棱锥的体积最大时,设点,分别为棱,的中点,试在棱上确定一点,使得,并求与平面所成角的大小.
答案:(Ⅰ)(Ⅱ)与平面所成角的大小
【解析】
【详解】
本题考察立体几何线面的基本关系,考察如何取到最值,用均值不等式和导数均可求最值.同时考察直线与平面所成角.本题可用综合法和空间向量法都可以.运用空间向量法对计算的要求要高些.
(Ⅰ)解法1:在如图1所示的△中,设,则.
由,知,△为等腰直角三角形,所以.
由折起前知,折起后(如图2),,,且,
所以平面.又,所以.于是
,
当且仅当,即时,等号成立,
故当,即时, 三棱锥的体积最大.
解法2:
同解法1,得.
令,由,且,解得.
当时,;当时,.
所以当时,取得最大值.
故当时, 三棱锥的体积最大.
(Ⅱ)解法1:以为原点,建立如图a所示的空间直角坐标系.
由(Ⅰ)知,当三棱锥的体积最大时,,.
于是可得,,,,,,
且.
设,则. 因为等价于,即
,故,.
所以当(即是的靠近点的一个四等分点)时,.
设平面的一个法向量为,由 及,
得 可取.
设与平面所成角的大小为,则由,,可得
,即.
故与平面所成角的大小为
解法2:由(Ⅰ)知,当三棱锥的体积最大时,,.
如图b,取的中点,连结,,,则∥.
由(Ⅰ)知平面,所以平面.
如图c,延长至P点使得,连,,则四边形为正方形,
所以. 取的中点,连结,又为的中点,则∥,
所以. 因为平面,又面,所以.
又,所以面. 又面,所以.
因为当且仅当,而点F是唯一的,所以点是唯一的.
即当(即是的靠近点的一个四等分点),.
连接,,由计算得,
所以△与△是两个共底边的全等的等腰三角形,
如图d所示,取的中点,连接,,
则平面.在平面中,过点作于,
则平面.故是与平面所成的角.
在△中,易得,所以△是正三角形,
故,即与平面所成角的大小为
【总结提升】
与空间角有关的探索性问题主要为与两异面直线所成的角、直线与平面所成的角和二面角有关的存在性问题,常利用空间向量法求解.求解时,一般把“是否存在”问题转化为“点的坐标是否有解,是否有规定范围内的解”等问题,并注意准确理解和熟练应用夹角公式.
其步骤是:(1)假设存在(或结论成立);(2)建立空间直角坐标系,设(求)出相关空间点的坐标;(3)构建有关向量;(4)结合空间向量,利用线面角或二面角的公式求解;(5)作出判断.
题型四: 探索性问题----线面关系中的存在性问题
例10. (2023·全国·高三专题练习)如图,在四棱锥中,,,点F为棱CD的中点,与E,F相异的动点P在棱EF上.
(1)当P为EF的中点时,证明:平面ADE;
(2)设平面EAD与平面EBC的交线为l,是否存在点P使得平面PBD?若存在,求的值;若不存在,请说明理由.
答案:(1)证明见解析
(2)存在,
【解析】
分析:
(1)设点为棱的中点,连接,,通过证明四边形为平行四边形,得到,再根据线面平行的判定定理可证平面ADE;
(2)延长,相交于点,连接,则直线为平面与平面的交线,连接,交于点,若平面,由线面平行的性质可知,设,推出,根据三点共线的结论求出,从而可推出.
(1)如图,设点为棱的中点,连接,,∴,,∵,,∴,,∴四边形为平行四边形,∴,又平面,平面,∴平面.
(2)如图,延长,相交于点,连接,则直线为平面与平面的交线,连接,交于点,若平面,由线面平行的性质可知,设,∵点为棱的中点,,,∴,∵,,三点共线, ∴,即,所以当时,,∴,又平面,平面,∴平面,∴存在满足条件的点使得平面,此时.
例11.(2023·北京·高考真题(理))如图,在四棱锥P–ABCD中,PA⊥平面ABCD,AD⊥CD,AD∥BC,PA=AD=CD=2,BC=3.E为PD的中点,点F在PC上,且.
(Ⅰ)求证:CD⊥平面PAD;
(Ⅱ)求二面角F–AE–P的余弦值;
(Ⅲ)设点G在PB上,且.判断直线AG是否在平面AEF内,说明理由.
答案:(Ⅰ)见解析;
(Ⅱ) ;
(Ⅲ)见解析.
【解析】
分析:
(Ⅰ)由题意利用线面垂直的判定定理即可证得题中的结论;
(Ⅱ)建立空间直角坐标系,结合两个半平面的法向量即可求得二面角F-AE-P的余弦值;
(Ⅲ)首先求得点G的坐标,然后结合平面的法向量和直线AG的方向向量可判断直线是否在平面内.
【详解】
(Ⅰ)由于PA⊥平面ABCD,CD平面ABCD,则PA⊥CD,
由题意可知AD⊥CD,且PA∩AD=A,
由线面垂直的判定定理可得CD⊥平面PAD.
(Ⅱ)以点A为坐标原点,平面ABCD内与AD垂直的直线为x轴,AD,AP方向为y轴,z轴建立如图所示的空间直角坐标系,
易知:,
由可得点F的坐标为,
由可得,
设平面AEF的法向量为:,则
,
据此可得平面AEF的一个法向量为:,
很明显平面AEP的一个法向量为,
,
二面角F-AE-P的平面角为锐角,故二面角F-AE-P的余弦值为.
(Ⅲ)易知,由可得,
则,
注意到平面AEF的一个法向量为:,
其且点A在平面AEF内,故直线AG在平面AEF内.
例12. (2023·北京·高考真题(理))如图,在四棱锥中, 平面平面,.
(1)求证:平面;
(2)求直线与平面所成角的正弦值;
(3)在棱上是否存在点,使得平面?若存在, 求的值;若不存在, 说明理由.
答案:(1)证明见解析;(2);(3)存在,.
【解析】
【详解】
分析:
试题分析:(Ⅰ)由面面垂直的性质定理知AB⊥平面,根据线面垂直的性质定理可知,再由线面垂直的判定定理可知平面;(Ⅱ)取的中点,连结,以O为坐标原点建立空间直角坐标系O-xyz,利用向量法可求出直线PB与平面PCD所成角的正弦值;(Ⅲ)假设存在,根据A,P,M三点共线,设,根据BM∥平面PCD,即(为平面PCD的法向量),求出的值,从而求出的值.
试题解析:(Ⅰ)因为平面平面,,
所以平面.
所以.
又因为,
所以平面.
(Ⅱ)取的中点,连结.
因为,所以.
又因为平面,平面平面,
所以平面.
因为平面,所以.
因为,所以.
如图建立空间直角坐标系.由题意得,
.
设平面的法向量为,则
即
令,则.
所以.
又,所以.
所以直线与平面所成角的正弦值为.
(Ⅲ)设是棱上一点,则存在使得.
因此点.
因为平面,所以平面当且仅当,
即,解得.
所以在棱上存在点使得平面,此时.
【总结提升】
解决线面关系中存在性问题的策略
对于线面关系中的存在性问题,首先假设存在,然后在该假设条件下,利用向量法进行线面关系的逻辑推理,寻找假设满足的数据或事实,若满足,则肯定假设,若得出矛盾的结论,则否定假设.名称
定义
空间向量
在空间中,具有大小和方向的量
相等向量
方向相同且模相等的向量
相反向量
方向相反且模相等的向量
共线向量
(或平行向量)
表示空间向量的有向线段所在的直线互相平行或重合的向量
共面向量
平行于同一个平面的向量
高考数学一轮复习知识点讲解+真题测试专题8.8立体几何综合问题(真题测试)(原卷版+解析): 这是一份高考数学一轮复习知识点讲解+真题测试专题8.8立体几何综合问题(真题测试)(原卷版+解析),共41页。试卷主要包含了单选题,多选题,填空题,解答题等内容,欢迎下载使用。
高考数学一轮复习知识点讲解+真题测试专题8.7立体几何中的向量方法(知识点讲解)(原卷版+解析): 这是一份高考数学一轮复习知识点讲解+真题测试专题8.7立体几何中的向量方法(知识点讲解)(原卷版+解析),共31页。
高考数学一轮复习知识点讲解+真题测试专题8.7立体几何中的向量方法(真题测试)(原卷版+解析): 这是一份高考数学一轮复习知识点讲解+真题测试专题8.7立体几何中的向量方法(真题测试)(原卷版+解析),共43页。试卷主要包含了单选题,多选题,填空题,解答题等内容,欢迎下载使用。