高考数学一轮复习知识点讲解+真题测试专题7.6数学归纳法(知识点讲解)(原卷版+解析)
展开【核心素养】
与数列、函数、不等式、几何等相结合,通过考查数学归纳法的应用,考查学生综合分析解决问题的能力,凸显逻辑推理、数学运算、数学抽象、数学直观等的核心素养.
【知识点展示】
数学归纳法
1.证明一个与正整数n有关的命题,可按下列步骤进行:
(1)(归纳奠基)证明当n取第一个值n0(n0∈N*)
时命题成立.
(2)(归纳递推)假设n=k(k≥n0,k∈N*)时命题成立,证明当n=k+1时命题也成立.
只要完成这两个步骤,就可以断定命题对从n0开始的所有正整数n都成立.
2.数学归纳法的框图表示
【常考题型剖析】
题型一:利用数学归纳法证明不等式
例1.(2023·全国·高三专题练习)已知等比数列的公比,且,是,的等差中项,数列满足:数列的前项和为.
(1)求数列、的通项公式;
(2)数列满足:,,证明
例2.(2023·上海市复旦实验中学高二期末)已知数列满足:,且,(n为正整数).
(1)计算:,,的值;
(2)猜测的通项公式,并证明;
(3)设,问是否存在使不等式对于一切的正整数均成立的最大整数p,若存在请求出,若不存在,请说明理由.
例3.(2023·浙江·高考真题)已知数列满足:,
证明:当时,
(I);
(II);
(III).
【总结提升】
数学归纳法证明不等式的适用范围及关键
(1)适用范围:当遇到与正整数n有关的不等式证明时,若用其他办法不容易证,则可考虑应用数学归纳法.
(2)关键:由n=k时命题成立证n=k+1时命题也成立,在归纳假设使用后可运用比较法、综合法、分析法、放缩法等来加以证明,充分应用均值不等式、不等式的性质等放缩技巧,使问题得以简化
题型二:归纳、猜想、证明
例4.(2023·全国·高二课时练习)数列中,,,,成等差数列,分别计算,,的值,猜想的表达式为______.
例5.(2023·全国·高考真题(理))设数列{an}满足a1=3,.
(1)计算a2,a3,猜想{an}的通项公式并加以证明;
(2)求数列{2nan}的前n项和Sn.
例6.(2023·广东·高考真题(理))设数列的前项和为,满足,,且.
(1)求、、的值;
(2)求数列的通项公式.
【总结提升】
(1)“归纳——猜想——证明”的一般步骤
①计算(根据条件,计算若干项).
②归纳猜想(通过观察、分析、综合、联想,猜想出一般结论).
③证明(用数学归纳法证明).
(2)与“归纳——猜想——证明”相关的常用题型的处理策略
①与函数有关的证明:由已知条件验证前几个特殊值正确得出猜想,充分利用已知条件并用数学归纳法证明.
②与数列有关的证明:利用已知条件,当直接证明遇阻时,可考虑应用数学归纳法.
题型三:利用数学归纳法证明等式
例7.(2023·全国·高考真题(理))记为数列的前n项和,为数列的前n项积,已知.
(1)证明:数列是等差数列;
(2)求的通项公式.
例8.(2023·江苏·高考真题)已知集合,,,令表示集合所含元素的个数.
(1)写出的值;
(2)当时,写出的表达式,并用数学归纳法证明.
【总结提升】
数学归纳法证明等式的思路和注意点
(1)思路:用数学归纳法证明等式问题,要“先看项”,弄清等式两边的构成规律,等式两边各有多少项,初始值n0是多少.
(2)注意点:由n=k时等式成立,推出n=k+1时等式成立,一要找出等式两边的变化(差异),明确变形目标;二要充分利用归纳假设,进行合理变形,正确写出证明过程,不利用归纳假设的证明,就不是数学归纳法.
专题7.6 数学归纳法(知识点讲解)
【知识框架】
【核心素养】
与数列、函数、不等式、几何等相结合,通过考查数学归纳法的应用,考查学生综合分析解决问题的能力,凸显逻辑推理、数学运算、数学抽象、数学直观等的核心素养.
【知识点展示】
数学归纳法
1.证明一个与正整数n有关的命题,可按下列步骤进行:
(1)(归纳奠基)证明当n取第一个值n0(n0∈N*)
时命题成立.
(2)(归纳递推)假设n=k(k≥n0,k∈N*)时命题成立,证明当n=k+1时命题也成立.
只要完成这两个步骤,就可以断定命题对从n0开始的所有正整数n都成立.
2.数学归纳法的框图表示
【常考题型剖析】
题型一:利用数学归纳法证明不等式
例1.(2023·全国·高三专题练习)已知等比数列的公比,且,是,的等差中项,数列满足:数列的前项和为.
(1)求数列、的通项公式;
(2)数列满足:,,证明
答案:(1),;(2)证明见解析.
【解析】
(1)由已知条件列出方程组,求得首项和公比,求得数列的通项公式,再由数列的前项和为,进而求得的通项公式;
(2)把的通项公式代入,首先利用数学归纳法证得,再利用放缩法及等差数列的前项和,即可证明.
【详解】
(1)由,是,的等差中项,
可得,即,即,解得或,
又因为,所以,
又由,所以,
因为数列的前项和为,
当时,,
当时,,
当时,满足上式,
所以,所以.
(2)先用数学归纳法证明当,,
①当时,,左式>右式,不等式成立;
②假设时,不等式成立,即,
当时,,因为在上单调递增,
由,得,即,
可得,不等式也成立.
由①②得证当,,
所以.
例2.(2023·上海市复旦实验中学高二期末)已知数列满足:,且,(n为正整数).
(1)计算:,,的值;
(2)猜测的通项公式,并证明;
(3)设,问是否存在使不等式对于一切的正整数均成立的最大整数p,若存在请求出,若不存在,请说明理由.
答案:(1),,
(2),证明见解析
(3)最大整数
【解析】
分析:
(1)将依次代入递推关系式即可;
(2)由可猜想得到;利用数学归纳法可证得猜想;
(3)分离变量得,令,通过计算可知,由此可得.
(1)
由题意得:;,
(2)
猜想:;
证明:当时,,满足;
假设当时,成立,
那么当时,,
即当时,成立;
综上所述:对于任意,成立.
(3)
由(2)得:,;
若恒成立,则;
令,
则,
;
,,
即递增,,,
又为整数,最大整数.
例3.(2023·浙江·高考真题)已知数列满足:,
证明:当时,
(I);
(II);
(III).
答案:(I)见解析;(II)见解析;(Ⅲ)见解析.
【解析】
分析:
(I)用数学归纳法可证明;
(Ⅱ)由(Ⅰ)可得, 构造函数,利用函数的单调性可证;
(Ⅲ)由及,递推可得.
【详解】
(Ⅰ)用数学归纳法证明:.
当时,.
假设时,,那么时,若,
则,矛盾,故.
因此,所以,因此.
(Ⅱ)由得,
.
记函数,
,
函数在上单调递增,所以,
因此,故.
(Ⅲ)因为,所以,
由,得,
所以,故.
综上,.
【名师点睛】
本题主要考查利用数列不等式的证明,常利用以下方法:(1)数学归纳法;(2)构造函数,利用函数的单调性证明不等式;(3)利用递推关系证明.
【总结提升】
数学归纳法证明不等式的适用范围及关键
(1)适用范围:当遇到与正整数n有关的不等式证明时,若用其他办法不容易证,则可考虑应用数学归纳法.
(2)关键:由n=k时命题成立证n=k+1时命题也成立,在归纳假设使用后可运用比较法、综合法、分析法、放缩法等来加以证明,充分应用均值不等式、不等式的性质等放缩技巧,使问题得以简化
题型二:归纳、猜想、证明
例4.(2023·全国·高二课时练习)数列中,,,,成等差数列,分别计算,,的值,猜想的表达式为______.
答案:
【解析】
分析:
由题意可得,再利用,可依次求出,,的值,从而可猜想,然后利用数学归纳法证明即可
【详解】
因为数列中,,,,成等差数列,
所以,得,
当时,,
当时,,
当时,,
由此可猜想,
证明如下:当时,成立,
假设当时,成立,即,则
当时,,
所以当时成立,
所以
故答案为:
例5.(2023·全国·高考真题(理))设数列{an}满足a1=3,.
(1)计算a2,a3,猜想{an}的通项公式并加以证明;
(2)求数列{2nan}的前n项和Sn.
答案:(1),,,证明见解析;(2).
【解析】
分析:
(1)方法一:(通性通法)利用递推公式得出,猜想得出的通项公式,利用数学归纳法证明即可;
(2)方法一:(通性通法)根据通项公式的特征,由错位相减法求解即可.
【详解】
(1)
[方法一]【最优解】:通性通法
由题意可得,,由数列的前三项可猜想数列是以为首项,2为公差的等差数列,即.
证明如下:
当时,成立;
假设时,成立.
那么时,也成立.
则对任意的,都有成立;
[方法二]:构造法
由题意可得,.由得.,则,两式相减得.令,且,所以,两边同时减去2,得,且,所以,即,又,因此是首项为3,公差为2的等差数列,所以.
[方法三]:累加法
由题意可得,.
由得,即,,…….以上各式等号两边相加得,所以.所以.当时也符合上式.综上所述,.
[方法四]:构造法
,猜想.由于,所以可设,其中为常数.整理得.故,解得.所以.又,所以是各项均为0的常数列,故,即.
(2)由(1)可知,
[方法一]:错位相减法
,①
,②
由①②得:
,
即.
[方法二]【最优解】:裂项相消法
,所以.
[方法三]:构造法
当时,,设,即,则,解得.
所以,即为常数列,而,所以.
故.
[方法四]:
因为,令,则
,
,
所以.
故.
【整体点评】
(1)方法一:通过递推式求出数列的部分项从而归纳得出数列的通项公式,再根据数学归纳法进行证明,是该类问题的通性通法,对于此题也是最优解;
方法二:根据递推式,代换得,两式相减得,设,从而简化递推式,再根据构造法即可求出,从而得出数列的通项公式;
方法三:由化简得,根据累加法即可求出数列的通项公式;
方法四:通过递推式求出数列的部分项,归纳得出数列的通项公式,再根据待定系数法将递推式变形成,求出,从而可得构造数列为常数列,即得数列的通项公式.
(2)
方法一:根据通项公式的特征可知,可利用错位相减法解出,该法也是此类题型的通性通法;
方法二:根据通项公式裂项,由裂项相消法求出,过程简单,是本题的最优解法;
方法三:由时,,构造得到数列为常数列,从而求出;
方法四:将通项公式分解成,利用分组求和法分别求出数列的前项和即可,其中数列的前项和借助于函数的导数,通过赋值的方式求出,思路新颖独特,很好的简化了运算.
例6.(2023·广东·高考真题(理))设数列的前项和为,满足,,且.
(1)求、、的值;
(2)求数列的通项公式.
答案:(1),,;(2).
【解析】
【详解】
试题分析:(1)由代入,得到,然后由的值逐步算出与的值,然后利用求出、、的值;(2)利用(1)中的结论归纳出的通项公式,并以此归纳出的表达式,然后利用数学归纳法证明数列的通项公式的正确性.
试题解析:(1)由得,
整理得,因此有,
即,解得,
同理有,即,解得,
,,;
(2)由题意得,
由(1)知,,,猜想,
假设当时,猜想成立,即,则有,
则当时,有,
这说明当时,猜想也成立,
由归纳原理知,对任意,.
【总结提升】
(1)“归纳——猜想——证明”的一般步骤
①计算(根据条件,计算若干项).
②归纳猜想(通过观察、分析、综合、联想,猜想出一般结论).
③证明(用数学归纳法证明).
(2)与“归纳——猜想——证明”相关的常用题型的处理策略
①与函数有关的证明:由已知条件验证前几个特殊值正确得出猜想,充分利用已知条件并用数学归纳法证明.
②与数列有关的证明:利用已知条件,当直接证明遇阻时,可考虑应用数学归纳法.
题型三:利用数学归纳法证明等式
例7.(2023·全国·高考真题(理))记为数列的前n项和,为数列的前n项积,已知.
(1)证明:数列是等差数列;
(2)求的通项公式.
答案:(1)证明见解析;(2).
【解析】
分析:
(1)由已知得,且,取,得,由题意得,消积得到项的递推关系,进而证明数列是等差数列;
(2)由(1)可得的表达式,由此得到的表达式,然后利用和与项的关系求得.
【详解】
(1)[方法一]:
由已知得,且,,
取,由得,
由于为数列的前n项积,
所以,
所以,
所以,
由于
所以,即,其中
所以数列是以为首项,以为公差等差数列;
[方法二]【最优解】:
由已知条件知 ①
于是. ②
由①②得. ③
又, ④
由③④得.
令,由,得.
所以数列是以为首项,为公差的等差数列.
[方法三]:
由,得,且,,.
又因为,所以,所以.
在中,当时,.
故数列是以为首项,为公差的等差数列.
[方法四]:数学归纳法
由已知,得,,,,猜想数列是以为首项,为公差的等差数列,且.
下面用数学归纳法证明.
当时显然成立.
假设当时成立,即.
那么当时,.
综上,猜想对任意的都成立.
即数列是以为首项,为公差的等差数列.
(2)
由(1)可得,数列是以为首项,以为公差的等差数列,
,
,
当n=1时,,
当n≥2时,,显然对于n=1不成立,
∴.
【整体点评】
(1)方法一从得,然后利用的定义,得到数列的递推关系,进而替换相除消项得到相邻两项的关系,从而证得结论;
方法二先从的定义,替换相除得到,再结合得到,从而证得结论,为最优解;
方法三由,得,由的定义得,进而作差证得结论;方法四利用归纳猜想得到数列,然后利用数学归纳法证得结论.
(2)由(1)的结论得到,求得的表达式,然后利用和与项的关系求得的通项公式;
例8.(2023·江苏·高考真题)已知集合,,,令表示集合所含元素的个数.
(1)写出的值;
(2)当时,写出的表达式,并用数学归纳法证明.
答案:(1)13
(2)
【解析】
【详解】
试题分析:(1)根据题意按分类计数:共13个(2)由(1)知,所以当时,的表达式要按除的余数进行分类,最后不难利用数学归纳法进行证明
试题解析:(1).
(2)当时,().
下面用数学归纳法证明:
①当时,,结论成立;
②假设()时结论成立,那么时,在的基础上新增加的元素在,,中产生,分以下情形讨论:
1)若,则,此时有
,结论成立;
2)若,则,此时有
,结论成立;
3)若,则,此时有
,结论成立;
4)若,则,此时有
,结论成立;
5)若,则,此时有
,结论成立;
6)若,则,此时有
,结论成立.
综上所述,结论对满足的自然数均成立.
【总结提升】
数学归纳法证明等式的思路和注意点
(1)思路:用数学归纳法证明等式问题,要“先看项”,弄清等式两边的构成规律,等式两边各有多少项,初始值n0是多少.
(2)注意点:由n=k时等式成立,推出n=k+1时等式成立,一要找出等式两边的变化(差异),明确变形目标;二要充分利用归纳假设,进行合理变形,正确写出证明过程,不利用归纳假设的证明,就不是数学归纳法.
高考数学一轮复习知识点讲解+真题测试专题7.4数列求和(知识点讲解)(原卷版+解析): 这是一份高考数学一轮复习知识点讲解+真题测试专题7.4数列求和(知识点讲解)(原卷版+解析),共21页。
高考数学一轮复习知识点讲解+真题测试专题7.4数列求和(真题测试)(原卷版+解析): 这是一份高考数学一轮复习知识点讲解+真题测试专题7.4数列求和(真题测试)(原卷版+解析),共21页。试卷主要包含了单选题,多选题,填空题,解答题等内容,欢迎下载使用。
高考数学一轮复习知识点讲解+真题测试专题7.1数列的概念与简单表示(知识点讲解)(原卷版+解析): 这是一份高考数学一轮复习知识点讲解+真题测试专题7.1数列的概念与简单表示(知识点讲解)(原卷版+解析),共21页。