新九年级数学时期讲义第5讲二次函数(三)-基础班(学生版+解析)
展开利用二次函数解决实际问题,要建立数学模型,即把实际问题转化为二次函数问题,利用题中存在的公式、内含的规律等相等关系,建立函数关系式,再利用函数的图象及性质去研究问题.在研究实际问题时要注意自变量的取值范围应具有实际意义.
利用二次函数解决实际问题的一般步骤是:
(1)建立适当的平面直角坐标系;
(2)把实际问题中的一些数据与点的坐标联系起来;
(3)用待定系数法求出抛物线的关系式;
(4)利用二次函数的图象及其性质去分析问题、解决问题.
要点诠释:
常见的问题:求最大(小)值(如求最大利润、最大面积、最小周长等)、涵洞、桥梁、抛物体、抛物线的模型问题等.解决这些实际问题关键是找等量关系,把实际问题转化为函数问题,列出相关的函数关系式.
1.列二次函数关系
【例题精选】
例1(2023•昌图县校级一模)把160元的电器连续两次降价后的价格为y元,若平均每次降价的百分率是x,则y与x的函数关系式为( )
A.y=320(x﹣1)B.y=320(1﹣x)
C.y=160(1﹣x2)D.y=160(1﹣x)2
例2(2023•山西)北中环桥是省城太原的一座跨汾河大桥(如图1),它由五个高度不同,跨径也不同的抛物线型钢拱通过吊桥,拉索与主梁相连,最高的钢拱如图2所示,此钢拱(近似看成二次函数的图象﹣抛物线)在同一竖直平面内,与拱脚所在的水平面相交于A,B两点.拱高为78米(即最高点O到AB的距离为78米),跨径为90米(即AB=90米),以最高点O为坐标原点,以平行于AB的直线为x轴建立平面直角坐标系,则此抛物线钢拱的函数表达式为( )
A.y=x2B.y=﹣x2
C.y=x2D.y=﹣x2
【随堂练习】
1.(2023秋•永嘉县期中)共享单车为市民出行带来了方便,某单车公司第一个月投放a辆单车,计划第三个月投放单车y辆,设该公司第二、三两个月投放单车数量的月平均增长率为x,那么y与x的函数关系是( )
A.y=x2+aB.y=a(1+x)2C.y=(1﹣x)2+aD.y=a(1﹣x)2
2.(2023秋•庐阳区校级月考)某单车公司第一个月投放a辆单车,计划第三个月投放单车y辆,该公司第二、三两个月投放单车数量的月平均增长率为x,那么y与x的函数关系是( )
A.y=a(1﹣x)2B.y=a(1+x)2C.y=ax2D.y=x2+a
2.实际问题
【例题精选】
例1(2023秋•庐阳区校级期中)如图,从某建筑物9米高的窗口A处用水管向外喷水,喷出的水成抛物线状(抛物线
所在平面与墙面垂直),如果抛物线的最高点M离墙1米,离地面12米,建立平面直角坐标系,如图.
(1)求抛物线的解析式;
(2)求水流落地点B离墙的距离OB.
例2 (2023秋•香坊区校级月考)如图,某养殖场在养殖面积扩建中,准备将总长为78米的篱笆围成矩形ABCD形状的鸡舍,其中AD一边利用现有的一段足够长的围墙,其余三边用篱笆,且在与墙平行的一边BC上开一个2米宽的门PQ.设AB边长为x米,鸡舍面积为y平方米.
(1)求出y与x的函数关系式;(不需写自变量的取值范围)
(2)当鸡舍的面积为800平方米时,求出鸡舍的一边AB的长.
【随堂练习】
1.(2023秋•淮南期中)某地网红秋千在推出后吸引了大量游客前来,其秋千高度h(单位:m)与时间t(单位:s)之间的关系可以近似地用二次函数刻画,其图象如图所示,已知秋千在静止时的高度为0.6m.根据图象,当推出秋千3s后,秋千的高度为( )
A.10mB.15mC.16mD.18m
2.(2023秋•江岸区校级月考)一位运动员在距篮下4m处跳起投篮,球运行的路线是抛物线,当球运行的水平距离为2.5m时,达到最大高度3.5m,然后准确落入篮圈.如图所示,建立平面直角坐标系,已知篮圈中心到地面的距离为3.05m,该运动员身高1.9m,在这次跳投中,球在头顶上方0.25m处出手球出手时,他跳离地面的高度是( )
A.0.1mB.0.2mC.0.3mD.0.4m
3.(2023•铜仁市模拟)赵州桥的桥拱可以用抛物线的一部分表示,函数关系为,当水面宽度AB为20m时,水面与桥拱顶的高度DO等于( )
A.2mB.4mC.10mD.16m
4.(2023•宝安区二模)如图,小明想用长为12米的栅栏(虚线部分),借助围墙围成一个矩形花园ABCD,则矩形ABCD的最大面积是( )平方米.
A.16B.18C.20D.24
3.二次函数与几何综合
【例题精选】
例1 (2023•雨花区校级模拟)如图1,已知抛物线y=ax2+2x+c(a≠0),与y轴交于点A(0,6),与x轴交于点B(6,0).
(1)求这条抛物线的表达式及其顶点坐标;
(2)设点P是抛物线上的动点,若在此抛物线上有且只有三个P点使得△PAB的面积是定值S,求这三个点的坐标及定值S.
(3)若点F是抛物线对称轴上的一点,点P是(2)中位于直线AB上方的点,在抛物线上是否存在一点Q,使得P、Q、B、F为顶点的四边形是平行四边形?若存在,请直接写出点Q的坐标;若不存请说明理由.
【随堂练习】
1.(2023•无为县一模)如图,点E、F、G、H分别是正方形ABCD边AB、BC、CD、DA上的点,且AE=BF=CG=DH.设A、E两点间的距离为x,四边形EFGH的面积为y,则y与x的函数图象可能为( )
A.B.
C.D.
2.(2023•雁塔区校级一模)如图,抛物线y=x2+bx+c经过A(﹣1,0)、B(4,0)两点,与y轴交于点C,D为y轴上一点,点D关于直线BC的对称点为D′.
(1)求抛物线的解析式;
(2)当点D在x轴上方,且△OBD的面积等于△OBC的面积时,求点D的坐标;
(3)当点D'刚好落在第四象限的抛物线上时,求出点D的坐标;
(4)点P在抛物线上(不与点B、C重合),连接PD、PD′、DD′,是否存在点P,使△PDD′是以D为直角顶点的等腰直角三角形?若存在,请直接写出点P的坐标;若不存在,请说明理由.
综合练习
一.选择题(共3小题)
1.将进货单价为70元的某种商品按零售价100元一个售出时,每天能卖出20个.若这种商品的零售价在一定范围内每降价1元,其日销售量就增加1个,则能获取的最大利润是( )
A.600元B.625元C.650元D.675元
2.汽车刹车后行驶的距离s(单位:米)关于行驶的时间t(单位:秒)的函数解析式为s=﹣6t2+bt(b为常数).已知t=时,s=6,则汽车刹车后行驶的最大距离为( )
A.米B.8米C.米D.10米
3.超市有一种“喜之郎“果冻礼盒,内装两个上下倒置的果冻,果冻高为4cm,底面是个直径为6cm的圆,轴截面可以近似地看作一个抛物线,为了节省成本,包装应尽可能的小,这个包装盒的长AD(不计重合部分,两个果冻之间没有挤压)至少为( )
A.(6+3)cmB.(6+2)cmC.(6+2)cmD.(6+3)cm
二.解答题(共5小题)
4.如图,抛物线y=ax2+bx+3(a≠0)的对称轴为直线x=﹣1,抛物线交x轴于A、C两点,与直线y=x﹣1交于A、B两点,直线AB与抛物线的对称轴交于点E.
(1)求抛物线的解板式.
(2)点P在直线AB上方的抛物线上运动,若△ABP的面积最大,求此时点P的坐标.
(3)在平面直角坐标系中,以点B、E、C、D为顶点的四边形是平行四边形,请直接写出符合条件点D的坐标.
5.某商场试销一种成本为60元/件的T恤,规定试销期间单价不低于成本单价,又获利不得高于40%,经试销发现,销售量y(件)不销售单价x(元/件)符合一次函数y=kx+b,且x=70时,y=50;x=80时,y=40;
(1)写出销售单价x的取值范围;
(2)求出一次函数y=kx+b的解析式;
(3)若该商场获得利润为w元,试写出利润w与销售单价x之间的关系式,销售单价定为多少时,商场可获得最大利润,最大利润是多少?
6.某商场试销一种成本为每件60元的服装,规定试销期间销售单价不低于成本单价,且获利不得高于45%,经试销发现:销售量y(件)与销售单价x(元)符合一次函数y=kx+b(k≠0),且当x=65时,y=55;当x=70时,y=50.
(1)求y与x之间的解析式;
(2)若该商场获得利润为w元,写出利润w与销售单价x之间的关系式,并求出利润是500元时的销售单价;
(3)销售单价定为多少元时,商场可获得最大利润,最大利润是多少元?
7.公司销售一种进价为20元/个的计算器,销售过程中的其他开支(不含造价)总计40万元,其销售量y(万个)与销售价格x(元/个)的变化如下表:
(1)求出当销售量等于2.5万个时,销售价格等于多少?
(2)求出该公司销售这种计算器的净得利润z(万元)与销售价格x(元/个)的函数解析式;
(3)销售价格应定为多少元时,获得利润最大,最大利润是多少?
8.如图隧道的截面由抛物线和长方形构成,长方形的长是12m,宽是4m.按照图中所示的直角坐标系,抛物线可以用y=﹣x2+bx+c表示,且抛物线上的点C到OB的水平距离为3m,到地面OA的距离为m.
(1)求抛物线的函数关系式,并计算出拱顶D到地面OA的距离;
(2)一辆货运汽车载一长方体集装箱后高为6m,宽为4m,如果隧道内设双向车道,那么这辆货车能否安全通过?
销售价格x(元/个)
销售量y(万元)
30≤x≤60
﹣x+8
60≤x≤80
第5讲 二次函数(三)
利用二次函数解决实际问题,要建立数学模型,即把实际问题转化为二次函数问题,利用题中存在的公式、内含的规律等相等关系,建立函数关系式,再利用函数的图象及性质去研究问题.在研究实际问题时要注意自变量的取值范围应具有实际意义.
利用二次函数解决实际问题的一般步骤是:
(1)建立适当的平面直角坐标系;
(2)把实际问题中的一些数据与点的坐标联系起来;
(3)用待定系数法求出抛物线的关系式;
(4)利用二次函数的图象及其性质去分析问题、解决问题.
要点诠释:
常见的问题:求最大(小)值(如求最大利润、最大面积、最小周长等)、涵洞、桥梁、抛物体、抛物线的模型问题等.解决这些实际问题关键是找等量关系,把实际问题转化为函数问题,列出相关的函数关系式.
1.列二次函数关系
【例题精选】
例1(2023•昌图县校级一模)把160元的电器连续两次降价后的价格为y元,若平均每次降价的百分率是x,则y与x的函数关系式为( )
A.y=320(x﹣1)B.y=320(1﹣x)
C.y=160(1﹣x2)D.y=160(1﹣x)2
分析:由原价160元可以得到第一次降价后的价格是160(1﹣x),第二次降价是在第一次降价后的价格的基础上降价的,为160(1﹣x)(1﹣x),由此即可得到函数关系式.
【解答】解:第一次降价后的价格是160(1﹣x),
第二次降价为160(1﹣x)×(1﹣x)=160(1﹣x)2
则y与x的函数关系式为y=160(1﹣x)2.
故选:D.
【点评】此题考查从实际问题中得出二次函数解析式,需注意第二次降价是在第一次降价后的价格的基础上降价的,所以会出现自变量的二次,即关于x的二次函数.
例2(2023•山西)北中环桥是省城太原的一座跨汾河大桥(如图1),它由五个高度不同,跨径也不同的抛物线型钢拱通过吊桥,拉索与主梁相连,最高的钢拱如图2所示,此钢拱(近似看成二次函数的图象﹣抛物线)在同一竖直平面内,与拱脚所在的水平面相交于A,B两点.拱高为78米(即最高点O到AB的距离为78米),跨径为90米(即AB=90米),以最高点O为坐标原点,以平行于AB的直线为x轴建立平面直角坐标系,则此抛物线钢拱的函数表达式为( )
A.y=x2B.y=﹣x2
C.y=x2D.y=﹣x2
分析:直接利用图象假设出抛物线解析式,进而得出答案.
【解答】解:设抛物线的解析式为:y=ax2,
将B(45,﹣78)代入得:﹣78=a×452,
解得:a=﹣,
故此抛物线钢拱的函数表达式为:y=﹣x2.
故选:B.
【点评】此题主要考查了根据实际问题列二次函数解析式,正确假设出抛物线解析式是解题关键.
【随堂练习】
1.(2023秋•永嘉县期中)共享单车为市民出行带来了方便,某单车公司第一个月投放a辆单车,计划第三个月投放单车y辆,设该公司第二、三两个月投放单车数量的月平均增长率为x,那么y与x的函数关系是( )
A.y=x2+aB.y=a(1+x)2C.y=(1﹣x)2+aD.y=a(1﹣x)2
【解答】解:设该公司第二、三两个月投放单车数量的月平均增长率为x,
依题意得第三个月第三个月投放单车a(1+x)2辆,
则y=a(1+x)2.
故选:B.
2.(2023秋•庐阳区校级月考)某单车公司第一个月投放a辆单车,计划第三个月投放单车y辆,该公司第二、三两个月投放单车数量的月平均增长率为x,那么y与x的函数关系是( )
A.y=a(1﹣x)2B.y=a(1+x)2C.y=ax2D.y=x2+a
【解答】解:设该公司第二、三两个月投放单车数量的月平均增长率为x,
依题意得第三个月第三个月投放单车a(1+x)2辆,
则y=a(1+x)2.
故选:B.
2.实际问题
【例题精选】
例1(2023秋•庐阳区校级期中)如图,从某建筑物9米高的窗口A处用水管向外喷水,喷出的水成抛物线状(抛物线
所在平面与墙面垂直),如果抛物线的最高点M离墙1米,离地面12米,建立平面直角坐标系,如图.
(1)求抛物线的解析式;
(2)求水流落地点B离墙的距离OB.
分析:(1)根据抛物线上点的坐标特点确定二次函数的解析式;
(2)根据(1)中求得的二次函数解析式即可求解.
【解答】解:(1)根据题意,得
A(0,9),顶点M(1,12),
设抛物线解析式为y=a(x﹣1)2+12,
把A(0,9)代入,得
a=﹣3,
所以抛物线的解析式为y=﹣3(x﹣1)2+12=﹣3x2+6x+9.
答:抛物线的解析式为y=﹣3x2+6x+9.
(2)当y=0时,0=﹣3x2+6x+9
解得x1=3,x2=﹣1
所以B(3,0).
答:水流落地点B离墙的距离OB为3米.
【点评】本题考查了二次函数的应用,解决本题的关键是根据抛物线上点的坐标特点求解析式.
例2 (2023秋•香坊区校级月考)如图,某养殖场在养殖面积扩建中,准备将总长为78米的篱笆围成矩形ABCD形状的鸡舍,其中AD一边利用现有的一段足够长的围墙,其余三边用篱笆,且在与墙平行的一边BC上开一个2米宽的门PQ.设AB边长为x米,鸡舍面积为y平方米.
(1)求出y与x的函数关系式;(不需写自变量的取值范围)
(2)当鸡舍的面积为800平方米时,求出鸡舍的一边AB的长.
分析:解:(1)设AB边长为x米,鸡舍面积为y平方米,
由题意得:y=AB×AD=x(78+2﹣2x)=x(80﹣2x)=﹣2x2+80x;
(2)由题意得:y=﹣2x2+80x=800,
解得:x=20,
答鸡舍的一边AB的长为20米.
【解答】解:(1)设AB边长为x米,鸡舍面积为y平方米,
由题意得:y=AB×AD=x(78+2﹣2x)=x(80﹣2x)=﹣2x2+80x;
(2)由题意得:y=﹣2x2+80x=800,
解得:x=20,
答鸡舍的一边AB的长为20米.
【点评】本题考查了二次函数的性质在实际生活中的应用.面积最大的问题常利函数的增减性来解答,我们首先要吃透题意,确定变量,建立函数模型,然后结合实际选择最优方案.
【随堂练习】
1.(2023秋•淮南期中)某地网红秋千在推出后吸引了大量游客前来,其秋千高度h(单位:m)与时间t(单位:s)之间的关系可以近似地用二次函数刻画,其图象如图所示,已知秋千在静止时的高度为0.6m.根据图象,当推出秋千3s后,秋千的高度为( )
A.10mB.15mC.16mD.18m
【解答】解:观察图象可知:
当推出秋千3s后,秋千的高度为15m.
故选:B.
2.(2023秋•江岸区校级月考)一位运动员在距篮下4m处跳起投篮,球运行的路线是抛物线,当球运行的水平距离为2.5m时,达到最大高度3.5m,然后准确落入篮圈.如图所示,建立平面直角坐标系,已知篮圈中心到地面的距离为3.05m,该运动员身高1.9m,在这次跳投中,球在头顶上方0.25m处出手球出手时,他跳离地面的高度是( )
A.0.1mB.0.2mC.0.3mD.0.4m
【解答】解:∵当球运行的水平距离为2.5米时,达到最大高度3.5米,
∴抛物线的顶点坐标为(0,3.5),
∴设抛物线的表达式为y=ax2+3.5.
由图知图象过以下点:(1.5,3.05).
∴2.25a+3.5=3.05,
解得:a=﹣0.2,
∴抛物线的表达式为y=﹣0.2x2+3.5.
设球出手时,他跳离地面的高度为hm,
因为y=﹣0.2x2+3.5,
则球出手时,球的高度为h+1.9+0.25=(h+2.15)m,
∴h+2.15=﹣0.2×(﹣2.5)2+3.5,
∴h=0.1(m).
故选:A.
3.(2023•铜仁市模拟)赵州桥的桥拱可以用抛物线的一部分表示,函数关系为,当水面宽度AB为20m时,水面与桥拱顶的高度DO等于( )
A.2mB.4mC.10mD.16m
【解答】解:根据题意B的横坐标为10,
把x=10代入y=﹣x2,
得y=﹣4,
∴A(﹣10,﹣4),B(10,﹣4),
即水面与桥拱顶的高度DO等于4m.
故选:B.
4.(2023•宝安区二模)如图,小明想用长为12米的栅栏(虚线部分),借助围墙围成一个矩形花园ABCD,则矩形ABCD的最大面积是( )平方米.
A.16B.18C.20D.24
【解答】解:
设AB=x,则BC=12﹣2x
得矩形ABCD的面积:S=x(12﹣2x)=﹣2x2+12=﹣2(x﹣3)2+18
即矩形ABCD的最大面积为18平方米
故选:B.
3.二次函数与几何综合
【例题精选】
例1 (2023•雨花区校级模拟)如图1,已知抛物线y=ax2+2x+c(a≠0),与y轴交于点A(0,6),与x轴交于点B(6,0).
(1)求这条抛物线的表达式及其顶点坐标;
(2)设点P是抛物线上的动点,若在此抛物线上有且只有三个P点使得△PAB的面积是定值S,求这三个点的坐标及定值S.
(3)若点F是抛物线对称轴上的一点,点P是(2)中位于直线AB上方的点,在抛物线上是否存在一点Q,使得P、Q、B、F为顶点的四边形是平行四边形?若存在,请直接写出点Q的坐标;若不存请说明理由.
分析:(1)将交点坐标代入解析式可求解;
(2)设AB上方的抛物线上有点P,过点P作AB的平行线交对称轴于点C,且与抛物线只有一个交点为P,设区PC解析式与抛物线解析式组成方程组,由△=0,可求PC解析式,可求点P坐标,由等底等高的三角形面积相等,可得另两个点所在直线与AB,PC都平行,且与AB的距离等于PC与AB的距离,可求P'E的解析式,即可求解;
(3)分两种情况讨论,由平行四边形的性质可求解.
【解答】解:(1)∵抛物线y=ax2+2x+c(a≠0),与y轴交于点A(0,6),与x轴交于点B(6,0).
∴
∴
∴抛物线解析式为:y=﹣x2+2x+6,
∵y=﹣x2+2x+6=﹣(x﹣2)2+8,
∴顶点坐标为(2,8)
(2)∵点A(0,6),点B(6,0),
∴直线AB解析式y=﹣x+6,
当x=2时,y=4,
∴点D(2,4)
如图1,设AB上方的抛物线上有点P,过点P作AB的平行线交对称轴于点C,且与抛物线只有一个交点为P,
设直线PC解析式为y=﹣x+b,
∴﹣x2+2x+6=﹣x+b,且只有一个交点,
∴△=9﹣4××(b﹣6)=0
∴b=,
∴直线PC解析式为y=﹣x+,
∴当x=2,y=
∴点C坐标(2,),
∴CD=
∵﹣x2+2x+6=﹣x+,
∴x=3,
∴点P(3,)
∵在此抛物线上有且只有三个P点使得△PAB的面积是定值S,
∴另两个点所在直线与AB,PC都平行,且与AB的距离等于PC与AB的距离,
∴DE=CD=,
∴点E(2,﹣),
设P'E的解析式为y=﹣x+m,
∴﹣=﹣2+m,
∴m=
∴P'E的解析式为y=﹣x+,
∴﹣x2+2x+6=﹣x+,
∴x=3±3,
∴点P'(3+3,﹣﹣3),P''(3﹣3,﹣+3),
∴S=×6×(﹣3)=.
(3)设点Q(x,y)
若PB是对角线,
∵P、Q、B、F为顶点的四边形是平行四边形
∴BP与FQ互相平分,
∴
∴x=7
∴点Q(7,﹣);
若PB为边,
∵P、Q、B、F为顶点的四边形是平行四边形,
∴BF∥PQ,BF=PQ,或BQ∥FP,BQ=PF,
∴xB﹣xF=xP﹣xQ,或xB﹣xQ=xP﹣xF,
∴xQ=3﹣(6﹣2)=﹣1,或xQ=6﹣(3﹣2)=5,
∴点Q(﹣1,)或(5,);
综上所述,点Q(7,﹣)或(﹣1,)或(5,).
【点评】本题是二次函数综合题,考查了待定系数法求解析式,二次函数的性质,平行线的性质,平行四边形的性质等知识,利用分类讨论思想解决问题是本题的关键.
【随堂练习】
1.(2023•无为县一模)如图,点E、F、G、H分别是正方形ABCD边AB、BC、CD、DA上的点,且AE=BF=CG=DH.设A、E两点间的距离为x,四边形EFGH的面积为y,则y与x的函数图象可能为( )
A.B.
C.D.
【解答】解:设正方形的边长为m,则m>0,
∵AE=x,
∴DH=x,
∴AH=m﹣x,
∵EH2=AE2+AH2,
∴y=x2+(m﹣x)2,
y=x2+x2﹣2mx+m2,
y=2x2﹣2mx+m2,
=2[(x﹣m)2+],
=2(x﹣m)2+m2,
∴y与x的函数图象是A.
故选:A.
2.(2023•雁塔区校级一模)如图,抛物线y=x2+bx+c经过A(﹣1,0)、B(4,0)两点,与y轴交于点C,D为y轴上一点,点D关于直线BC的对称点为D′.
(1)求抛物线的解析式;
(2)当点D在x轴上方,且△OBD的面积等于△OBC的面积时,求点D的坐标;
(3)当点D'刚好落在第四象限的抛物线上时,求出点D的坐标;
(4)点P在抛物线上(不与点B、C重合),连接PD、PD′、DD′,是否存在点P,使△PDD′是以D为直角顶点的等腰直角三角形?若存在,请直接写出点P的坐标;若不存在,请说明理由.
【解答】解:(1)∵抛物线y=x2+bx+c经过A(﹣1,0)、B(4,0)
∴
解得,
∴抛物线解析式为:y=x2﹣3x﹣4;
(2)∵抛物线y=x2﹣3x﹣4与y轴交于点C,
∴点C(0,﹣4),
∴OC=4,
设点D(0,y)(y>0)
∵△OBD的面积等于△OBC的面积,
∴×OB×y=OB×4,
∴y=4,
∴点D(0,4)
(3)∵OB=OC=4,
∴∠OCB=45°,
∵点D关于直线BC的对称点为D′.
∴∠DCB=∠D'CB=45°,CD=CD',
∴∠DCD'=90°,
∴CD'∥OB,
∴点D'的纵坐标为﹣4,
∴﹣4=x2﹣3x﹣4,
∴x1=0(舍去),x2=3,
∴CD=CD'=3,
∴点D(0,﹣1)
(4)若点D在点C上方,如图1,过点P作PH⊥y轴,
∵∠DCD'=90°,CD=CD',
∴∠CDD'=45°,
∵∠D'DP=90°
∴∠HDP=45°,且PH⊥y轴,
∴∠HDP=∠HPD=45°,
∴HP=HD,
∵∠CDD'=∠HDP,∠PHD=∠DCD'=90°,DP=DD',
∴△DPH≌△DD'C(AAS)
∴CD=CD'=HD=HP,
设CD=CD'=HD=HP=a,
∴点P(a,﹣4+2a)
∴a2﹣3a﹣4=﹣4+2a,
∴a=5,a=0(不合题意舍去),
∴点P(5,6)
若点D在点C下方,如图2,
∵DD'=DP,∠DCD'=90°,
∴CD=CP,∠DCP=∠COB,
∴CP∥AB,
∴点P纵坐标为﹣4,
∴﹣4=x2﹣3x﹣4,
∴x1=0(舍去),x2=3,
∴点P(3,﹣4)
综上所述:点P(5,6)或(3,﹣4).
综合练习
一.选择题(共3小题)
1.将进货单价为70元的某种商品按零售价100元一个售出时,每天能卖出20个.若这种商品的零售价在一定范围内每降价1元,其日销售量就增加1个,则能获取的最大利润是( )
A.600元B.625元C.650元D.675元
【解答】解:设降价x元,所获得的利润为W元,
则W=(20+x)(100﹣x﹣70)=﹣x2+10x+600=﹣(x﹣5)2+625,
∵﹣1<0
∴当x=5元时,二次函数有最大值W=625.
∴获得的最大利润为625元.
故选:B.
2.汽车刹车后行驶的距离s(单位:米)关于行驶的时间t(单位:秒)的函数解析式为s=﹣6t2+bt(b为常数).已知t=时,s=6,则汽车刹车后行驶的最大距离为( )
A.米B.8米C.米D.10米
【解答】解:把t=,s=6代入s=﹣6t2+bt得,
6=﹣6×+b×,
解得,b=15
∴函数解析式为s=﹣6t2+15t=﹣6(t﹣)2+,
∴当t=时,s取得最大值,此时s=,
故选:C.
3.超市有一种“喜之郎“果冻礼盒,内装两个上下倒置的果冻,果冻高为4cm,底面是个直径为6cm的圆,轴截面可以近似地看作一个抛物线,为了节省成本,包装应尽可能的小,这个包装盒的长AD(不计重合部分,两个果冻之间没有挤压)至少为( )
A.(6+3)cmB.(6+2)cmC.(6+2)cmD.(6+3)cm
【解答】解:设左侧抛物线的方程为:y=ax2,
点A的坐标为(﹣3,4),将点A坐标代入上式并解得:a=,
则抛物线的表达式为:y=x2,
由题意得:点MG是矩形HFEO的中线,则点N的纵坐标为2,
将y=2代入抛物线表达式得:2=x2,解得:x=(负值已舍去),
则AD=2AH+2x=6+3,
故选:A.
二.解答题(共5小题)
4.如图,抛物线y=ax2+bx+3(a≠0)的对称轴为直线x=﹣1,抛物线交x轴于A、C两点,与直线y=x﹣1交于A、B两点,直线AB与抛物线的对称轴交于点E.
(1)求抛物线的解板式.
(2)点P在直线AB上方的抛物线上运动,若△ABP的面积最大,求此时点P的坐标.
(3)在平面直角坐标系中,以点B、E、C、D为顶点的四边形是平行四边形,请直接写出符合条件点D的坐标.
【解答】解:(1)令y=0,可得:x﹣1=0,解得:x=1,
∴点A(1,0),
∵抛物线y=ax2+bx+3(a≠0)的对称轴为直线x=﹣1,
∴﹣1×2﹣1=﹣3,即点C(﹣3,0),
∴,解得:,
∴抛物线的解析式为:y=﹣x2﹣2x+3;
(2)∵点P在直线AB上方的抛物线上运动,
∴设点P(m,﹣m2﹣2m+3),
∵抛物线与直线y=x﹣1交于A、B两点,
∴,解得:,,
∴点B(﹣4,﹣5),
如图,过点P作PM∥y轴交直线AB于点M,
则点M(m,m﹣1),
∴PM=﹣m2﹣2m+3﹣m+1=﹣m2﹣3m+4,
∴S△ABP=S△PBM+S△PBA
=(﹣m2﹣3m+4)(m+4)+(﹣m2﹣3m+4)(1﹣m)
=,
∴当m=时,P最大,
∴点P(,);
(3)当x=﹣1时,y=﹣1﹣1=﹣2,
∴点E(﹣1,﹣2),
如图,直线BC的解析式为y=5x+15,直线BE的解析式为y=x﹣1,直线CE的解析式为y=﹣x﹣3,
∵以点B、C、E、D为顶点的四边形是平行四边形,
∴直线D1D3的解析式为y=5x+3,直线D1D2的解析式为y=x+3,直线D2D3的解析式为y=﹣x﹣9,
联立得D1(0,3),
同理可得D2(﹣6,﹣3),D3(﹣2,﹣7),
综上所述,符合条件的点D的坐标为D1(0,3),D2(﹣6,﹣3),D3(﹣2,﹣7).
5.某商场试销一种成本为60元/件的T恤,规定试销期间单价不低于成本单价,又获利不得高于40%,经试销发现,销售量y(件)不销售单价x(元/件)符合一次函数y=kx+b,且x=70时,y=50;x=80时,y=40;
(1)写出销售单价x的取值范围;
(2)求出一次函数y=kx+b的解析式;
(3)若该商场获得利润为w元,试写出利润w与销售单价x之间的关系式,销售单价定为多少时,商场可获得最大利润,最大利润是多少?
【解答】解:(1)根据题意得,
60≤x≤60×(1+40%),
即60≤x≤84;
(2)由题意得:,
∴.
∴一次函数的解析式为:y=﹣x+120;
(3)w=(x﹣60)(﹣x+120)=﹣x2+180x﹣7200=﹣(x﹣90)2+900,
∵抛物线开口向下,
∴当x<90时,w随x的增大而增大,
而60≤x≤84,
∴当x=84时,w=(84﹣60)×(120﹣84)=864.
答:当销售价定为84元/件时,商场可以获得最大利润,最大利润是864元.
6.某商场试销一种成本为每件60元的服装,规定试销期间销售单价不低于成本单价,且获利不得高于45%,经试销发现:销售量y(件)与销售单价x(元)符合一次函数y=kx+b(k≠0),且当x=65时,y=55;当x=70时,y=50.
(1)求y与x之间的解析式;
(2)若该商场获得利润为w元,写出利润w与销售单价x之间的关系式,并求出利润是500元时的销售单价;
(3)销售单价定为多少元时,商场可获得最大利润,最大利润是多少元?
【解答】解:(1)∵当x=65时,y=55;当x=70时,y=50.
∴,
解得:,
∴y=﹣x+120(60≤x≤87).
(2)w=(﹣x+120)(x﹣60),
w=﹣x2+180x﹣7200,
w=﹣(x﹣90)2+900,
当w=500时,有500=﹣(x﹣90)2+900,
解得,x=110(舍去)或x=70,
故利润是500元时的销售单价70元/件.
(3)又∵60<x≤60×(1+45%),
即60≤x≤87,
则x=87时获利最多,
将x=87代入,得w=﹣(87﹣90)2+900=891元.
答:售价定为87元有最大利润为891元.
7.公司销售一种进价为20元/个的计算器,销售过程中的其他开支(不含造价)总计40万元,其销售量y(万个)与销售价格x(元/个)的变化如下表:
(1)求出当销售量等于2.5万个时,销售价格等于多少?
(2)求出该公司销售这种计算器的净得利润z(万元)与销售价格x(元/个)的函数解析式;
(3)销售价格应定为多少元时,获得利润最大,最大利润是多少?
【解答】解:(1)由题意得,﹣x+8=2.5,
解得,x=55,
答:当销售量等于2.5万个时,销售价格等于55元/个;
(2)当30≤x≤60时,w=(x﹣20)(﹣0.1x+8)﹣40=﹣0.1x2+10x﹣200;
当60<x≤80时,w=(x﹣20)•﹣40=﹣+89;
(3)当30≤x≤60时,w=﹣0.1x2+10x﹣200=﹣0.1(x﹣50)2+50,
∴当x=50时,w取得最大值50(万元);
当60<x≤80时,w=﹣+89,
∵﹣2580<0,
∴w随x的增大而增大,当x=80时,w最大=121.25(万元)>50万元,
∴销售价格定为80元/件时,获得的利润最大,最大利润是121.25万元.
答:销售价格定为80元/件时,获得的利润最大,最大利润是121.25万元.
8.如图隧道的截面由抛物线和长方形构成,长方形的长是12m,宽是4m.按照图中所示的直角坐标系,抛物线可以用y=﹣x2+bx+c表示,且抛物线上的点C到OB的水平距离为3m,到地面OA的距离为m.
(1)求抛物线的函数关系式,并计算出拱顶D到地面OA的距离;
(2)一辆货运汽车载一长方体集装箱后高为6m,宽为4m,如果隧道内设双向车道,那么这辆货车能否安全通过?
【解答】解:(1)根据题意得B(0,4),C(3,),
把B(0,4),C(3,)代入y=﹣x2+bx+c得
解得.
所以抛物线解析式为y=﹣x2+2x+4,
则y=﹣(x﹣6)2+10,
所以D(6,10),
所以拱顶D到地面OA的距离为10m;
(2)由题意得货运汽车最外侧与地面OA的交点为(2,0)或(10,0),
当x=2或x=10时,y=>6,
所以这辆货车能安全通过.
销售价格x(元/个)
销售量y(万元)
30≤x≤60
﹣x+8
60≤x≤80
七年级数学暑期精品讲义第11讲.角的概念及运算--基础班(学生版+解析): 这是一份七年级数学暑期精品讲义第11讲.角的概念及运算--基础班(学生版+解析),共31页。学案主要包含了例题精选,随堂练习等内容,欢迎下载使用。
七年级数学暑期精品讲义第10讲.几何初步--点、线--基础班(学生版+解析): 这是一份七年级数学暑期精品讲义第10讲.几何初步--点、线--基础班(学生版+解析),共26页。学案主要包含了例题精选,随堂练习等内容,欢迎下载使用。
七年级数学暑期精品讲义第6讲.整式的加减运算-基础班(学生版+解析): 这是一份七年级数学暑期精品讲义第6讲.整式的加减运算-基础班(学生版+解析),共13页。学案主要包含了例题精选,随堂练习等内容,欢迎下载使用。