终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    专题05 相似三角形的应用综合(五大类型)(题型专练)(原卷版+解析版)

    立即下载
    加入资料篮
    资料中包含下列文件,点击文件名可预览资料内容
    • 原卷
      专题05 相似三角形的应用综合(五大类型)(题型专练)(原卷版).docx
    • 解析
      专题05 相似三角形的应用综合(五大类型)(题型专练)(解析版).docx
    专题05 相似三角形的应用综合(五大类型)(题型专练)(原卷版)第1页
    专题05 相似三角形的应用综合(五大类型)(题型专练)(原卷版)第2页
    专题05 相似三角形的应用综合(五大类型)(题型专练)(原卷版)第3页
    专题05 相似三角形的应用综合(五大类型)(题型专练)(解析版)第1页
    专题05 相似三角形的应用综合(五大类型)(题型专练)(解析版)第2页
    专题05 相似三角形的应用综合(五大类型)(题型专练)(解析版)第3页
    还剩11页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    数学九年级下册第6章 图形的相似6.7用相似三角形解决问题同步训练题

    展开

    这是一份数学九年级下册第6章 图形的相似6.7用相似三角形解决问题同步训练题,文件包含专题05相似三角形的应用综合五大类型题型专练原卷版docx、专题05相似三角形的应用综合五大类型题型专练解析版docx等2份试卷配套教学资源,其中试卷共40页, 欢迎下载使用。
    【题型1 利用相似三角形测量高度-平面镜测量法】
    【题型2 利用相似三角形测量高度-影子测量法】
    【题型3 利用相似三角形测量高度-手臂测量法】
    【题型4 利用相似三角形测量高度-标杆测量法】
    【题型5 利用相似三角形测量距离】
    【题型1 利用相似三角形测量高度-平面镜测量法】
    1.(2023秋•市北区期中)如图,某数学兴趣小组为了测量一凉亭AB的高度,他们采取了如下办法:①在凉亭的右边点E处放置了一平面镜,并测得BE=12米;②沿着直线BE后退到点D处,眼睛恰好看到镜子里凉亭的顶端A,并测得ED=3米,眼睛到地面的距离CD=1.6米(此时∠AEB=∠CED),那么凉亭AB的高为( )
    A.6.3米B.6.4米C.6.5米D.6.6米
    2.(2023•邯郸模拟)凸透镜成像的原理如图所示,AD∥l∥BC.若物体到焦点的距离与焦点到凸透镜中心线DB的距离之比为5:4,则物体被缩小到原来的( )
    A.B.C.D.
    3.(2023•靖宇县一模)如图,为了测量一栋楼的高度,小王在他的脚下放了一面镜子,然后向后退,直到他刚好在镜子中看到楼的顶部.如果小王身高1.55m,他的眼睛距地面1.50m,同时量得BC=0.3m,CE=2m,则楼高DE为 m.
    4.(2023•山西模拟)如图,在测量凹透镜焦距时,将凹透镜嵌入直径为AB的圆形挡板中,用一束平行于凹透镜主光轴的光线射向凹透镜,在光屏上形成一个直径为CD的圆形光斑.测得凹透镜的光心O到光屏的距离OE=36cm,AB=20cm,CD=50cm,则凹透镜的焦距f为 cm.(f为焦点F到光心O的距离)
    5.(2023•龙华区二模)如图,在边长为4米的正方形场地ABCD内,有一块以BC为直径的半圆形红外线接收“感应区”,边AB上的P处有一个红外线发射器,红外线从点P发射后,经AD、CD上某处的平面镜反射后到达“感应区”,若AP=1米,当红外线途经的路线最短时,AD上平面镜的反射点距离点A 米.
    6.(2023•海淀区校级一模)综合实践课上,小宇设计用光学原理来测量公园假山的高度,把一面镜子放在与假山AC距离为21米的B处,然后沿着射线CB退后到点E,这时恰好在镜子里看到山头A,利用皮尺测量BE=2.4米,若小宇的身高是1.6米,则假山AC的高度为 米.(结果保留整数)
    7.(2023•瓯海区一模)甲、乙两幢完全一样的房子如图1,小聪与弟弟住在甲幢,为测量对面的乙幢屋顶斜坡M,N之间的距离,制定如下方案:两幢房子截面图如图2,AB=12m,小聪在离屋檐A处3m的点G处水平放置平面镜(平面镜的大小忽略不计),弟弟在离点G水平距离3m的点H处恰好在镜子中看到乙幢屋顶N,此时测得弟弟眼睛与镜面的竖直距离IH=0.6m.下楼后,弟弟直立站在DE处,测得地面点F与E,M,N在一条直线上,DE=1.2m,FD=2m,BF=5m,则甲、乙两幢间距BC= m,乙幢屋顶斜坡M,N之间的距离为 m.
    8.(2023秋•仁寿县期中)为了测量学校旗杆的高度AB,数学兴趣小组带着标杆和皮尺来到操场进行测量,测量方案如下:如图,首先,小红在C处放置一平面镜,她从点C沿BC后退,当退行1.8米到D处时,恰好在镜子中看到旗杆顶点A的像,此时测得小红眼睛到地面的距离ED为1.5米;然后,小明在F处竖立了一根高1.6米的标杆FG,发现地面上的点H、标杆顶点G和旗杆顶点A在一条直线上,此时测得FH为2.4米,DF为3.3米,已知AB⊥BH,ED⊥BH,GF⊥BH,点B、C、D、F、H在一条直线上.
    (1)直接写出= ;
    (2)请根据以上所测数据,计算学校旗杆AB的高度.
    9.(2023秋•昌平区期中)为了测量水平地面上一栋建筑物AB的高度,学校数学兴趣小组做了如下的探索:根据光的反射定律,利用一面镜子和一根皮尺,设计如图所示的测量方案:先在水平地面上放置一面平面镜,并在镜面上做标记点C,后退至点D处恰好看到建筑物AB的顶端A在镜子中的像与镜面上的标记点C重合,法线是FC,小军的眼睛与地面距离DE是1.65m,BC、CD的长分别为60m、3m,求建筑物AB的高度.
    【题型2 利用相似三角形测量高度-影子测量法】
    10.如图,上体育课,九年级三班的甲、乙两名同学分别站在C、D的位置时,乙的影子恰好在甲的影子里边,已知甲,乙同学相距1米.甲身高1.8米,乙身高1.5米,则甲的影长是( )
    A.4米B.5米C.6米D.7米
    11.如图所示,小明在探究活动“测旗杆高度”中,发现旗杆的影子恰好落在地面和教室的墙壁上,测得CD=4m,DB=2m,而且此时测得1m高的杆的影子长2m,则旗杆AC的高度约为 m.
    12.小明想测量电线杆AB的高度,发现电线杆的影子恰好落在土坡的坡面CD和地面BC上,量得CD=4m,BC=10m,CD与地面成30°角,且在此时测得1m杆的影长为2m,求电线杆的高度.
    13.《孙子算经》是中国古代重要的数学著作,成书于约 1 500年前,其中有首歌谣:今有竿不知其长,量得影长一丈五尺,立一标杆,长一尺五寸,影长五寸,问竿长几何?意思是:如图,有一根竹竿OB不知道有多长,量得它在太阳下的影子BA长一丈五尺,同时立一根一尺五寸的小标杆O'B',它的影子B'A'长五寸,问竹竿OB的长度为多少尺?(注:1丈=10尺,1尺=10寸)
    14.如图,小华在晚上由路灯A走向路灯B.当他走到点P时,发现他身后影子的顶部刚好接触到路灯A的底部;当他向前再步行12m到达点Q时,发现他身前影子的顶部刚好接触到路灯B的底部.已知小华的身高是1.6m,两个路灯的高度都是9.6m,且AP=QB.
    (1)求两个路灯之间的距离.
    (2)当小华走到路灯B的底部时,他在路灯A下的影长是多少?
    15.在同一时刻两根木杆在太阳光下的影子如图所示,其中木杆AB=2米,它的影子BC=1.6米,木杆PQ的影子有一部分落在墙上,PM=1.2米,MN=0.8米,求木杆PQ的长度.
    【题型3 利用相似三角形测量高度-手臂测量法】
    16.“跳眼法”是指用手指和眼睛估测距离的方法步骤:
    第一步:水平举起右臂,大拇指紧直向上,大臂与身体垂直;
    第二步:闭上左眼,调整位置,使得右眼、大拇指、被测物体在一条直线上;
    第三步:闭上右眼,睁开左眼,此时看到被测物体出现在大拇指左侧,与大拇指指向的位置有一段横向距离,参照被测物体的大小,估算横向距离的长度;
    第四步:将横向距离乘以10(人的手臂长度与眼距的比值一般为10),得到的值约为被测物体离观测,点的距离值.
    如图是用“跳眼法”估测前方一辆汽车到观测点距离的示意图,该汽车的长度大约为4米,则汽车到观测点的距离约为( )
    A.40米B.60米C.80米D.100米
    17.“跳眼法”是炮兵常用的一种简易测距方法,如图,点A为左眼,点B为右眼,点O为右手大拇指,点C为敌人的位置,点D为敌人正左侧方的某一个参照物(CD∥AB),已知大多数人的眼距长约为6.4厘米左右,而手臂长约为64厘米左右.若CD的估测长度为50米,那么CO的大致距离为( )米.
    A.250B.320C.500D.750
    18.如图所示,某同学拿着一把有刻度的尺子,站在距电线杆30m的位置,把手臂向前伸直,将尺子竖直,看到尺子遮住电线杆时尺子的刻度为12cm,已知臂长60cm,则电线杆的高度为( )
    A.2.4mB.24mC.0.6mD.6m
    19.如图,某同学拿着一把12cm长的尺子,站在距电线杆30m的位置,把手臂向前伸直,将尺子竖直,看到尺子恰好遮住电线杆,已知臂长60cm,则电线杆的高度是( )
    A.2.4mB.24mC.0.6mD.6m
    【题型4 利用相似三角形测量高度-标杆测量法】
    20.如图,某同学在平地上利用标杆测量一棵大树的高度,移动标杆,使标杆、大树顶端的影子恰好落在地面的同一点A,标杆EC的高为2m,此时测得BC=3m,CA=1m,那么树DB的高度是( )
    A.32mB.8mC.6mD.0.125m
    21.如图,利用标杆BE测量建筑物的高度,已知标杆BE高2m,测得AB=3m,BC=6m.则建筑物CD的高是( )
    A.4mB.9mC.8mD.6m
    22.如图,某校数学兴趣小组利用标杆BE测量学校旗杆CD的高度,标杆BE高1.5m,测得AB=2m,BC=14m,则旗杆CD高度是( )
    A.9mB.10.5mC.12mD.16m
    23.数学实践课上,小明在测量教学楼高度时,先测出教学楼落在地面上的影长BA为20米(如图),然后在A处树立一根高3米的标杆,测得标杆的影长AC为4米,则楼高为( )
    A.10米B.12米C.15米D.25米
    24.如图,小明用长为2.5m的竹竿CD做测量工具,测量学校旗杆AB的高度,移动竹竿,使竹竿、旗杆的顶端的影子恰好落在地面的同一点O.此时,竹竿与这一点O相距6m、与旗杆相距12m,则旗杆AB的高为 m.
    25.如图,小卓利用标杆EF测量旗杆AB的高度,测得小卓的身高CD=1.8米,标杆EF=2.4米,DF=1米,BF=11米,则旗杆AB的高度是 米.
    26.小红和小华决定利用所学数学知识测量出一棵大树的高度.如图,小红在点C处,测得大树顶端A的仰角∠ACB的度数;小华竖立一根标杆并沿BC方向平移标杆,当恰好平移到点D时,发现从标杆顶端E处到点C的视线与标杆DE所夹的角∠CED与∠ACB相等,此时地面上的点F与标杆顶端E、大树顶端A在一条直线上,测得DF=2米,标杆DE=1.5米,CD=3米,已知B、C、D、F在一条直线上,AB⊥BF,DE⊥BF,请你根据测量结果求出这棵大树的高度AB.

    27.如图,是位于西安市长安区香积寺内的善导塔,善导塔为楼阁式砖塔,塔身全用青砖砌成,平面呈正方形,原为十三层,现存十一层,建筑形式独具一格.数学兴趣小组测量善导塔的高度AB,有以下两种方案:
    方案一:如图1,在距离塔底B点45m远的D处竖立一根高1.5m的标杆CD,小明在F处蹲下,他的眼睛所在位置E、标杆的顶端C和塔顶点A三点在一条直线上.已知小明的眼睛到地面的距离EF=0.8m,DF=1m,AB⊥BM,CD⊥BM,EF⊥BM,点B、D、F、M在同一直线上.
    方案二:如图2,小华拿着一把长为22cm的直尺CD站在离善导塔45m的地方(即点E到AB的距离为45m).他把手臂向前伸,尺子竖直,CD∥AB,尺子两端恰好遮住善导塔(即A、C、E在一条直线上,B、D、E在一条直线上),已知点E到直尺CD的距离为30cm.

    请你结合上述两个方案,选择其中的一个方案求善导塔的高度AB.我选择方案 .
    28.小明利用数学课所学知识测量学校门口路灯的高度.如图:AB为路灯主杆,AE为路灯的悬臂,CD是长为1.8米的标杆.已知路灯悬臂AE与地面BG平行,当标杆竖立于地面时,主杆顶端A、标杆顶端D和地面上一点G在同一直线上,此时小明发现路灯E、标杆顶端D和地面上另一点F也在同一条直线上(路灯主杆底端B、标杆底端C和地面上点F、点G在同一水平线上).这时小明测得FG长1.5米,路灯的正下方H距离路灯主杆底端B的距离为3米.请根据以上信息求出路灯主杆AB的高度.
    29.某数学兴趣小组决定利用所学知识测量一古建筑的高度.如图2,古建筑的高度为AB,在地面BC上取E,G两点,分别竖立两根高为1.5m的标杆EF和GH,两标杆间隔EG为26m,并且古建筑AB,标杆EF和GH在同一竖直平面内.从标杆EF后退2m到D处(即ED=2m),从D处观察A点,A、F、D三点成一线;从标杆GH后退4m到C处(即CG=4m),从C处观察A点,A、H、C三点也成一线.已知B、E、D、G、C在同一直线上,AB⊥BC,EF⊥BC,GH⊥BC,请你根据以上测量数据,帮助兴趣小组求出该古建筑AB的高度.
    30.大雁塔作为现存最早、规模最大的唐代四方楼阁式砖塔,造型简洁、气势雄伟,是西安市的标志性建筑和著名古迹,是古城西安的象征.某校九年级一班的兴趣小组准备去测量大雁塔的高度,测量方案如下:如图,首先,小明站在B处,位于点B正前方3米点C处有一平面镜,通过平面镜小明刚好可以看到大雁塔的顶端M的像,此时测得小明的眼睛到地面的距离AB为1.5米;然后,小刚在F处竖立了一根高2米的标杆EF,发现地面上的点D、标杆顶点E和塔顶M在一条直线上,此时测得DF为6米,CF为58米,已知MN⊥ND,AB⊥ND,EF⊥ND,点N、C、B、F、D在一条直线上,请根据以上所测数据,计算大雁塔的高度MN(平面镜大小忽略不计).
    31.某校社会实践小组为了测量古塔的高度,在地面上C处垂直于地面竖立了高度为2米的标杆CD,这时地面上的点E,标杆的顶端点D,古塔的塔尖点B正好在同一直线上,测得EC=1.2米,将标杆向后平移到点G处,这时地面上的点F,标杆的顶端点H,古塔的塔尖点B正好在同一直线上(点F,点G,点E,点C与古塔底处的点A在同一直线上),这时测得FG=1.8米,CG=20米,请你根据以上数据,计算古塔的高度AB.
    【题型5 利用相似三角形测量距离】
    32.据《墨经》记载,在两千多年前,我国学者墨子和他的学生做了“小孔成像”实验,阐释了光的直线传播原理.小孔成像的示意图如图所示,光线经过小孔O,物体AB在幕布上形成倒立的实像CD(点A、B的对应点分别是C、D).若物体AB的高为9cm,小孔O到物体和实像的水平距离BE、CE分别为12cm、9cm,则实像CD的高度为( ) cm.
    A.6cmB.6.25cmC.6.75cmD.7cm
    33.如图,平行于地面的圆桌正上方有一个灯泡(看作一个点),它发出的光线照射桌面后,在地面上形成圆形阴影,经测量得地面上阴影部分的边缘超出桌面0.5米,桌面的直径为2米,桌面距离地面的高度为1.5米,则灯泡距离桌面( )

    A.1米B.2.25米C.2米D.3米
    34.如图,放映幻灯片时,通过光源,把幻灯片上的图形放大到屏幕上.若光源到幻灯片的距离为20cm光源,到屏幕的距离为40cm,且幻灯片中图形的高度为8cm,则屏幕上图形的高度为( )
    A.8cmB.12cmC.16cmD.24cm
    35.如图,为了测量一栋楼的高度,王青同学在她脚下放了一面镜子,然后向后退,直到她刚好在镜子中看到大楼顶部.如果王青眼睛与地面的距离KL=1.6m,同时量得LM=0.4m,MS=5m,则楼高TS= m.
    36.如图①是用杠杆撬石头的示意图,当用力压杠杆时,杠杆绕着支点转动,另一端会向上翘起,石头就被翘动了.在图②中,杠杆的D端被向上翘起的距离BD=9cm,动力臂OA与阻力臂OB满足OA=3OB(AB与CD相交于点O),要把这块石头翘起,至少要将杠杆的C点向下压 cm.
    37.为测量池塘边两点A,B之间的距离,小明设计了如下的方案:在地面取一点O,使AC、BD交于点O,且CD∥AB.若测得OB:OD=3:2,CD=40米,则A,B两点之间的距离为 米.
    38.如图,光源P在水平横杆AB的上方,照射横杆AB得到它在平地上的影子为CD(点P、A、C在一条直线上,点P、B、D在一条直线上),不难发现AB∥CD.已知AB=1.5m,CD=4.5m,点P到横杆AB的距离是1m,则点P到地面的距离等于 m.

    相关试卷

    初中数学苏科版九年级下册8.2 货比三家同步达标检测题:

    这是一份初中数学苏科版九年级下册8.2 货比三家同步达标检测题,文件包含专题01数据的收集与整理八大类型题型专练原卷版docx、专题01数据的收集与整理八大类型题型专练解析版docx等2份试卷配套教学资源,其中试卷共37页, 欢迎下载使用。

    数学九年级下册第6章 图形的相似6.6 图形的位似课堂检测:

    这是一份数学九年级下册第6章 图形的相似6.6 图形的位似课堂检测,文件包含专题04图形的位似四大类型题型专练原卷版docx、专题04图形的位似四大类型题型专练解析版docx等2份试卷配套教学资源,其中试卷共34页, 欢迎下载使用。

    初中第5章 二次函数5.1 二次函数同步达标检测题:

    这是一份初中第5章 二次函数5.1 二次函数同步达标检测题,文件包含专题04二次函数yax-h²的图像和性质五大类型题型专练原卷版docx、专题04二次函数yax-h²的图像和性质五大类型题型专练解析版docx等2份试卷配套教学资源,其中试卷共10页, 欢迎下载使用。

    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map