所属成套资源:人教版八年级数学下学期题型模型培优专题练专题-原卷版+解析
人教版八年级数学下学期题型模型培优专题练专题14十字架模型-原卷版+解析
展开
这是一份人教版八年级数学下学期题型模型培优专题练专题14十字架模型-原卷版+解析,共16页。
◎结论:正方形内部,AE⊥BF,则 AE=BF,△ABE≌△BCF .
相等未必垂直
过点H作HP⊥CD与P,作I关于HP对称点Q,虽然HI=JK,但HQ≠JK
方法总结:正方形内两条互相垂直的直线与各边的交点所得的线段,那么这两条线段相等。
证明方法往往通过证明三角形全等,如果没有,则按照上图构造两个全等三角形,结合平行四边形的性质节课得出结论
1.(2023春·八年级课时练习)如图,将边长为3的正方形ABCD纸片沿EF折叠,点C落在AB边上的点G处,点D与点H重合,CG与EF交于点P,取GH的中点Q,连接PQ,则GPQ的周长最小值是( )
A.B.C.D.
2.(2021·黑龙江牡丹江·统考中考真题)如图,正方形ABCD的边长为3,E为BC边上一点,BE=1.将正方形沿GF折叠,使点A恰好与点E重合,连接AF,EF,GE,则四边形AGEF的面积为( )
A.2B.2C.6D.5
3.(2023春·八年级课时练习)如图,将边长为6cm的正方形纸片ABCD折叠,使点D落在AB边中点E处,点C落在点Q处,折痕为FH,则线段AF的长为( )
A.B.3C.D.
4.(2023春·全国·八年级专题练习)如图,将一边长为12的正方形纸片ABCD的顶点A折叠至DC边上的点E,使DE=5,折痕为PQ,则PQ的长为( )
A.12B.13C.14D.15
5.(2023春·八年级课时练习)如图,现有一张边长为的正方形纸片,点为正方形边上的一点(不与点,点重合)将正方形纸片折叠,使点落在边上的处,点落在处,交于,折痕为,连接,.则的周长是______.
6.(2023春·全国·八年级专题练习)如图,在正方形ABCD中,点E是BC上一点,BF⊥AE交DC于点F,若AB=5,BE=2,则AF=____.
7.(2023春·全国·八年级专题练习)正方形ABCD中,点E、F在BC、CD上,且BE=CF,AE与BF交于点G.
(1)如图1,求证AE⊥BF;
(2)如图2,在GF上截取GM=GB,∠MAD的平分线交CD于点H,交BF于点N,连接CN,求证:AN+CN=BN;
8.(2023春·全国·八年级专题练习)如图1,在正方形中,为上一点,连接,过点作于点,交于点.
(1)求证:;
(2)如图2,连接、,点、、、分别是、、、的中点,试判断四边形的形状,并说明理由;
(3)如图3,点、分别在正方形的边、上,把正方形沿直线翻折,使得的对应边恰好经过点,过点作于点,若,正方形的边长为3,求线段的长.
培优专题14 十字架模型
【模型讲解】
◎结论1:正方形内部,AE⊥BF,则 AE=BF,△ABE≌△BCF .
相等未必垂直
过点H作HP⊥CD与P,作I关于HP对称点Q,虽然HI=JK,但HQ≠JK
方法总结:正方形内两条互相垂直的直线与各边的交点所得的线段,那么这两条线段相等。
证明方法往往通过证明三角形全等,如果没有,则按照上图构造两个全等三角形,结合平行四边形的性质节课得出结论
1.(2023春·八年级课时练习)如图,将边长为3的正方形ABCD纸片沿EF折叠,点C落在AB边上的点G处,点D与点H重合,CG与EF交于点P,取GH的中点Q,连接PQ,则GPQ的周长最小值是( )
A.B.C.D.
【答案】B
【分析】连接BP,取CD的中点M,连接PM,根据折叠的性质,PM=PQ,GH=DC,PC=PG,要求△GPQ的周长的最小值,只需求PM+PB的最小值,当M、P、B三点共线时,PM+BP=BM最小,在Rt△BCM中,勾股定理求出BM,即可求解.
【详解】解:连接BP,取CD的中点M,连接PM,
由折叠可知,PM=PQ,GH=DC,PC=PG,
在Rt△BCG中,P是CG的中点,
∴BP=PG=GC,
∵Q是GH的中点,
∴QG=GH,
∴△GPQ的周长=PQ+QG+PG=PM+GH+PB=PM+PB+CD,
∵CD=3,
∴△GPQ的周长=PM+PB+,
当M、P、B三点共线时,PM+BP=BM最小,
在Rt△BCM中,BM=,
∴△GPQ的周长的最小值为.
故选B.
【点评】本题考查图形的翻折变换,熟练掌握正方形的性质、直角三角形的性质,正确添加辅助线是解题的关键.
2.(2021·黑龙江牡丹江·统考中考真题)如图,正方形ABCD的边长为3,E为BC边上一点,BE=1.将正方形沿GF折叠,使点A恰好与点E重合,连接AF,EF,GE,则四边形AGEF的面积为( )
A.2B.2C.6D.5
【答案】D
【分析】作FH⊥AB于H,交AE于P,设AG=GE=x,在Rt△BGE中求出x,在Rt△ABE中求出AE,再证明△ABE≌△FHG,得到FG=AE,然后根据S四边形AGEF=S△AGF+S△EGF求解即可
【详解】解:作FH⊥AB于H,交AE于P,则四边形ADFH是矩形,由折叠的性质可知,AG=GE,AE⊥GF,AO=EO.
设AG=GE=x,则BG=3-x,
在Rt△BGE中,
∵BE2+BG2=GE2,
∴12+(3-x)2=x2,
∴x=.
在Rt△ABE中,
∵AB2+BE2=AE2,
∴32+12=AE2,
∴AE=.
∵∠HAP+∠APH=90°,∠OFP+∠OPF=90°,∠APH=∠OPF,
∴∠HAP=∠OFP,
∵四边形ADFH是矩形,
∴AB=AD=HF.
在△ABE和△FHG中,
,
∴△ABE≌△FHG,
∴FG=AE=,
∴S四边形AGEF=S△AGF+S△EGF
=
=
=
=
=5.
故选D.
【点睛】本题考查了折叠的性质,正方形的性质,矩形的判定与性质,三角形的面积,以及勾股定理等知识,熟练掌握折叠的性质是解答本题的关键.
3.(2023春·八年级课时练习)如图,将边长为6cm的正方形纸片ABCD折叠,使点D落在AB边中点E处,点C落在点Q处,折痕为FH,则线段AF的长为( )
A.B.3C.D.
【答案】C
【分析】设EF=FD=x,在RT△AEF中利用勾股定理即可解决问题.
【详解】解:∵将边长为6cm的正方形纸片ABCD折叠,使点D落在AB边中点E处,
∴EF=DE,AB=AD=6cm,∠A=90°
∵点E是AB的中点,
∴AE=BE=3cm,
在Rt△AEF中,EF2=AF2+AE2,
∴(6﹣AF)2=AF2+9
∴AF=
故选C.
【点睛】本题考查翻折变换、正方形的性质、勾股定理等知识,解题的关键是设未知数利用勾股定理列出方程解决问题,属于中考常考题型.
4.(2023春·全国·八年级专题练习)如图,将一边长为12的正方形纸片ABCD的顶点A折叠至DC边上的点E,使DE=5,折痕为PQ,则PQ的长为( )
A.12B.13C.14D.15
【答案】B
【详解】过点P作PM⊥BC于点M,
由折叠得到PQ⊥AE,
∴∠DAE+∠APQ=90°,
又∠DAE+∠AED=90°,
∴∠AED=∠APQ,
∵AD∥BC,
∴∠APQ=∠PQM,
则∠PQM=∠APQ=∠AED,∠D=∠PMQ,PM=AD
∴△PQM≌△ADE
∴PQ=AE=.
【点睛】本题考查图形的翻折变换,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,如本题中折叠前后角相等.
5.(2023春·八年级课时练习)如图,现有一张边长为的正方形纸片,点为正方形边上的一点(不与点,点重合)将正方形纸片折叠,使点落在边上的处,点落在处,交于,折痕为,连接,.则的周长是______.
【答案】16.
【分析】解过点A作AM⊥GH于M,由正方形纸片折叠的性质得出∠EGH=∠EAB=∠ADC=90°,AE=EG,则EG⊥GH,∠EAG=∠EGA,由垂直于同一条直线的两直线平行得出AM∥EG,得出∠EGA=∠GAM,则∠EAG=∠GAM,得出AG平分∠DAM,则DG=GM,由AAS证得△ADG≌△AMG得出AD=AM=AB,由HL证得Rt△ABP≌Rt△AMP得出BP=MP,则△PGC的周长=CG+PG+PC=CG+MG+PM+PC=CG+DG+BP+PC=CD+CB=16.
【详解】解:过点A作AM⊥GH于M,如图所示:
∵将正方形纸片折叠,使点A落在CD边上的G处,
∴∠EGH=∠EAB=∠ADC=90°,AE=EG,
∴EG⊥GH,∠EAG=∠EGA,
∴AM∥EG,
∴∠EGA=∠GAM,
∴∠EAG=∠GAM,
∴AG平分∠DAM,
∴DG=GM,
在△ADG和△AMG中,
∴△ADG≌△AMG(AAS),
∴AD=AM=AB,
在Rt△ABP和Rt△AMP中,
∴Rt△ABP≌Rt△AMP(HL),
∴BP=MP,
∴△PGC的周长=CG+PG+PC=CG+MG+PM+PC=CG+DG+BP+PC=CD+CB=8+8=16,
故答案为16.
【点睛】本题考查了折叠的性质、正方形的性质、角平分线的判定与性质、全等三角形的判定与性质等知识,熟练掌握折叠的性质,通过作辅助线构造全等三角形是解题的关键.
6.(2023春·全国·八年级专题练习)如图,在正方形ABCD中,点E是BC上一点,BF⊥AE交DC于点F,若AB=5,BE=2,则AF=____.
【答案】.
【分析】根据正方形的性质得到AB=BC,∠ABE=∠BCF=90°,推出∠BAE=∠EBH,根据全等三角形的性质得到CF=BE=2,求得DF=5﹣2=3,根据勾股定理即可得到结论.
【详解】∵四边形ABCD是正方形,
∴AB=BC,∠ABE=∠BCF=90°,
∴∠BAE+∠AEB=90°,
∵BH⊥AE,
∴∠BHE=90°,
∴∠AEB+∠EBH=90°,
∴∠BAE=∠EBH,
在△ABE和△BCF中,
∴△ABE≌△BCF(ASA),
∴CF=BE=2,
∴DF=5﹣2=3,
∵四边形ABCD是正方形,
∴AB=AD=5,∠ADF=90°,
由勾股定理得:AF===.
故答案为.
【点睛】此题考查了正方形的性质、全等三角形的判定与性质、勾股定理,本题证明△ABE≌△BCF是解本题的关键.
7.(2023春·全国·八年级专题练习)正方形ABCD中,点E、F在BC、CD上,且BE=CF,AE与BF交于点G.
(1)如图1,求证AE⊥BF;
(2)如图2,在GF上截取GM=GB,∠MAD的平分线交CD于点H,交BF于点N,连接CN,求证:AN+CN=BN;
【答案】(1)见解析;(2)见解析;
【分析】(1)根据正方形的性质得AB=BC,,用SAS证明,得,根据三角形内角和定理和等量代换即可得;
(2)过点B作,交AN于点H,根据正方形的性质和平行线的性质,用SAS证明,得,根据角平分线性质得,则是等腰直角三角形,用SAS证明,得AH=CN,在中,根据勾股定理即可得;
【详解】解:(1)∵四边形ABCD 是正方形,
∴AB=BC,,
在和中,
∴(SAS),
∴,
∵,
∴,
∴,
∴;
(2)如图所示,过点B作,交AN于点H,
∵四边形ABCD是正方形,
∴AB=AC,,
∵,
,
∴,
由(1)得,,
∴,
∴,
∴,
∴,
在和中,
∴(SAS),
∴,
∵AN平分,
∴,
∴,
,
,
,
∴,
∴,
∴是等腰直角三角形,
∴BH=BN,
在和中,
∴(SAS),
∴AH=CN,
在中,根据勾股定理
,
∴;
【点睛】本题考查了正方形的性质,全等三角形的判定与性质,三角形内角和定理,角平分线,等腰直角三角形的判定与性质,勾股定理和锐角三角函数,解题的关键是掌握并灵活运用这些知识点.
8.(2023春·全国·八年级专题练习)如图1,在正方形中,为上一点,连接,过点作于点,交于点.
(1)求证:;
(2)如图2,连接、,点、、、分别是、、、的中点,试判断四边形的形状,并说明理由;
(3)如图3,点、分别在正方形的边、上,把正方形沿直线翻折,使得的对应边恰好经过点,过点作于点,若,正方形的边长为3,求线段的长.
【答案】(1)见解析;(2)四边形为正方形,理由见解析;(3)
【分析】(1)由四边形为正方形,可得,推得,由,可得,可证即可;
(2)、为、中点,可得为的中位线,可证,,由点、、、分别是、、、的中点,可得PQ是的中位线,MQ为的中位线,NP为的中位线,可证,,,,,,可证四边形为平行四边形.再证四边形为菱形,最后证即可;
(3)延长交于点,由对称性可得,,,由勾股定理可求,可得,设,在中,,解得,在中,可求.
【详解】(1)证明:∵四边形为正方形,
∴,
∴,
∵,
∴∠AHB=90°,
∴,
∴,
在与中,
,
∴,
∴.
(2)解:四边形为正方形,理由如下:
∵、为、中点,
∴为的中位线,
∴,,
∵点、、、分别是、、、的中点,
∴PQ是的中位线,MQ为的中位线,NP为的中位线,,
∴,,,,,,
∴,,
∴四边形为平行四边形.
∵,
∴,
∴四边形为菱形,
∵,,
∴,
∵,
∴,
∴四边形为正方形.
(3)解:延长交于点,
由对称性可知
,,,
在中,
,
∴,
设,则,
在中,
,
,
∴,
在中,
.
【点睛】本题考查正方形性质与判定,等角的余角性质三角形全等判定与性质,三角形中位线判定与性质,勾股定理,根据勾股定理建构方程,解拓展一元一次方程等知识,掌握以上知识是解题关键.
相关试卷
这是一份人教版八年级数学下学期题型模型培优专题练专题11378和578模型-原卷版+解析,共14页。
这是一份人教版八年级数学下学期题型模型培优专题练专题15矩形正方形翻折模型-原卷版+解析,共30页。
这是一份人教版八年级数学下学期题型模型培优专题练专题12垂美四边形模型-原卷版+解析,共10页。