|试卷下载
终身会员
搜索
    上传资料 赚现金
    2024七年级数学下册专题01平行线的判定和性质试题(附解析浙教版)
    立即下载
    加入资料篮
    2024七年级数学下册专题01平行线的判定和性质试题(附解析浙教版)01
    2024七年级数学下册专题01平行线的判定和性质试题(附解析浙教版)02
    2024七年级数学下册专题01平行线的判定和性质试题(附解析浙教版)03
    还剩23页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2024七年级数学下册专题01平行线的判定和性质试题(附解析浙教版)

    展开
    这是一份2024七年级数学下册专题01平行线的判定和性质试题(附解析浙教版),共26页。

    专题01 平行线的判定和性质一.选择题(共10小题,满分20分,每小题2分)1.(2分)(沙坪坝区期末)如图,直线AB,CD被直线EF所截,AB∥CD,∠1=113°,则∠2的度数为(  )A.23° B.67° C.77° D.113°解:∵AB∥CD,∴∠CFE=∠1=113°,∠2=180°﹣∠CFE=180°﹣113°=67°,故选:B.2.(2分)(九龙坡区校级月考)将一块三角板和一块直尺如图放置,若∠1=50°,则∠2的度数为(  )A.110° B.120° C.130° D.140°解:如图,∵∠3=∠1,∴∠2=∠A+∠3=140°.故选:D.3.(2分)(青云谱区校级期末)如图,已知长方形纸片ABCD,点E,F在AD边上,点G,H在BC边上,分别沿EG,FH折叠,使点D和点A都落在点M处,若α+β=119°,则∠EMF的度数为(  )A.57° B.58° C.59° D.60°解:∵长方形ABCD,∴AD∥BC,∴∠DEG=α,∠AFH=β,∴∠DEG+∠AFH=α+β=119°,由折叠得:∠DEM=2∠DEG,∠AFM=2∠AFH,∴∠DEM+∠AFM=2×119°=238°,∴∠FEM+∠EFM=360°﹣238°=122°,在△EFM中,∠EMF=180°﹣(∠FEM+∠EFM)=180°﹣122°=58°,故选:B.4.(2分)(殷都区校级月考)如图,AB∥CD,则图中α,β,γ三者之间的关系是(  )A.α+β+γ=180° B.α﹣β+γ=180° C.α+β﹣γ=180° D.α+β+γ=360°解:如图,延长AE交直线CD于F,∵AB∥CD,∴∠α+∠AFD=180°,∵∠AFD=∠β﹣∠γ,∴∠α+∠β﹣∠γ=180°,故选:C.5.(2分)(绿园区校级模拟)如图,已知锐角∠AOB,按下列步骤作图:①在射线OA上取一点C,以点O为圆心,OC长为半径作,交射线OB于点D,连接CD;②分别以点C,D为圆心,CD长为半径作弧,交于点M.N;③连MN,OM.则下列结论错误的是(  )A.∠COM=∠COD B.若OM=MN,则∠AOB=30° C.MN∥CD D.MN<3CD解:连接ON,MD,由作法得CM=CD=DN,∴∠COM=∠COD,所以A选项正确;∵OM=ON,∴当OM=MN时,△OMN为等边三角形,∴∠MON=60°,∵∠AOB=∠MOA=∠NOB=×60°=20°,所以B选项错误;∵,∴∠MDC=∠DMN,∴MN∥CD,所以C选项正确;∵CM+CD+DN>MN,∴3CD>MN,所以D选项正确.故选:B.6.(2分)(淮阴区期末)如图,将长方形ABCD沿线段EF折叠到EB'C'F的位置,若∠EFC'=100°,则∠DFC'的度数为(  )A.20° B.30° C.40° D.50°解:由翻折知,∠EFC=∠EFC'=100°,∴∠EFC+∠EFC'=200°,∴∠DFC'=∠EFC+∠EFC'﹣180°=200°﹣180°=20°,故选:A.7.(2分)(奉化区校级期末)如图,AD∥BC,∠D=∠ABC,点E是边DC上一点,连接AE交BC的延长线于点H.点F是边AB上一点.使得∠FBE=∠FEB,作∠FEH的角平分线EG交BH于点G,若∠DEH=100°,则∠BEG的度数为(  )A.30° B.40° C.50° D.60°解:设FBE=∠FEB=α,则∠AFE=2α,∠FEH的角平分线为EG,设∠GEH=∠GEF=β,∵AD∥BC,∴∠ABC+∠BAD=180°,而∠D=∠ABC,∴∠D+∠BAD=180°,∴AB∥CD,∠DEH=100°,则∠CEH=∠FAE=80°,∠AEF=180°﹣∠FEG﹣∠HEG=180°﹣2β,在△AEF中,80°+2α+180﹣2β=180°故β﹣α=40°,而∠BEG=∠FEG﹣∠FEB=β﹣α=40°,故选:B.8.(2分)(博望区校级一模)如图是一款手推车的平面示意图,其中AB∥CD,∠1=24°,∠2=76°,则∠3的度数为(  )A.104° B.128° C.138° D.156°解:如图:∵AB∥CD,∠1=24°,∴∠A=∠1=24°,∵∠2=76°,∠2+∠4=180°,∴∠4=180°﹣∠2=180°﹣76°=104°,∴∠3=∠4+∠A=104°+24°=128°.故选:B.9.(2分)(南岗区校级期中)如图,AB∥CD∥EF,则下列各式中正确的是(  )A.∠1+∠2+∠3=180° B.∠1+∠2=180°+∠3 C.∠1+∠3=180°+∠2 D.∠2+∠3=180°+∠1解:∵AB∥CD∥EF,∴∠2+∠BDC=180°,∠3=∠CDE,又∠BDC=∠CDE﹣∠1,∴∠2+∠3﹣∠1=180°.故选:D.10.(2分)(青秀区校级期中)已知AB∥CD,点E在BD连线的右侧,∠ABE与∠CDE的角平分线相交于点F,则下列说法正确的是(  )①∠ABE+∠CDE+∠E=360°;②若∠E=80°,则∠BFD=140°;③如图(2)中,若∠ABM=∠ABF,∠CDM=∠CDF,则6∠BMD+∠E=360°;④如图(2)中,若∠E=m°,∠ABM=∠CDF,则∠M=()°.A.①②④ B.②③④ C.①②③ D.①②③④解:∵AB∥CD,∴∠ABE+∠BEG=180°,∠CDE+∠DEG=180°,∴∠ABE+∠BEG+∠CDE+∠DEG=360°,即∠ABE+∠BED+∠CDE=360°,①正确,∵∠BED=80°,∠ABE+∠BED+∠CDE=360°,∴∠ABE+∠CDE=280°,∵AB∥CD,∴∠ABF=∠BFH,∠CDF=∠DFH,∴∠BFD=∠BFH+∠DFH=∠ABF+∠CDF=(∠ABE+∠CDE)=140°,②正确,与上同理,∠BMD=∠ABM+∠CDM=(∠ABF+∠CDF),∴6∠BMD=2(∠ABF+∠CDF)=∠ABE+∠CDE,∴6∠BMD+∠E=360°,③正确,由题意,④不一定正确,∴①②③正确,故选:C.二.填空题(共10小题,满分20分,每小题2分)11.(2分)(朝阳区校级期末)如图,已知AC∥BD,∠CAE=30°,∠DBE=35°,则∠AEB等于 65° .解:过点E作EF∥AC,∵AC∥BD,∴AC∥EF∥BD,∴∠AEF=∠CAE=30°,∠BEF=∠DBE=35°,∴∠AEB=∠AEF+∠BEF=65°.故答案为:65°.12.(2分)(宛城区校级期末)如图,把一个长方形纸片沿OG折叠后,C,D两点分别落在C',D'两点处,若∠AOD':∠D'OG=4:3,则∠BGO= 54 度.解:∵∠AOD':∠D'OG=4:3,设∠AOD'=4x,则∠D'OG=3x,由翻折可知∠DOG=∠D'OG=3x∵∠AOD'+∠D'OG+∠DOG=180°,即10x=180°,解得x=18°,∵AD∥BC,∴∠BGO=∠DOG=3x=54°,故答案为:54.13.(2分)(沙坪坝区校级期末)如图,直线GH分别与直线AB,CD相交于点G,H,且AB∥CD.点M在直线AB,CD之间,连接GM,HM,射线GH是∠AGM的平分线,在MH的延长线上取点N,连接GN,若∠N=∠BGM,∠M=∠N+∠HGN,则∠MHG的度数为 45° .解:过M作MF∥AB,过H作HE∥GN,如图:设∠BGM=2α,∠MHD=β,则∠N=∠BGM=2α,∴∠AGM=180°﹣2α,∵GH平分∠AGM,∴∠MGH=∠AGM=90°﹣α,∴∠BGH=∠BGM+∠MGH=90°+α,∵AB∥CD,∴MF∥AB∥CD,∴∠M=∠GMF+∠FMH=∠BGM+∠MHD=2α+β,∵∠M=∠N+∠HGN,∴2α+β=×2α+∠HGN,∴∠HGN=β﹣α,∵HE∥CN,∴∠GHE=∠HGN=β﹣α,∠EHM=∠N=2α,∴∠GHD=∠GHE+∠EHM+∠MHD=(β﹣α)+2α+β=2β+α,∵AB∥CD,∴∠BGH+∠GHD=180°,∴(90°+α)+(2β+α)=180°,∴α+β=45°,∴∠MHG=∠GHE+∠EHM=(β﹣α)+2α=α+β=45°,故答案为:45°.14.(2分)(苏州模拟)如图,把一张长方形纸片ABCD沿EF折叠,∠1=50°,则∠FGE= 80 °.解:由折叠得∠GEF=∠DEF,∵AD∥BC∴∠DEF=∠1∴∠GEF=∠1∵∠FGE+2∠1=180°,∴∠FGE=180°﹣2×50°=80°,故答案为:80.15.(2分)(大荔县校级月考)如图,在三角形ABC中,点D、E分别在AB、BC上,连接DE,且DE∥AC,∠1=∠2,若∠B=50°,则∠BAF的度数为 130° .解:∵DE∥AC,∴∠2=∠C,∵∠1=∠2,∴∠1=∠C,∴AF∥BC,∴∠B+∠BAF=180°,∵∠B=50°,∴∠BAF=180°﹣50°=130°.故答案为:130°.16.(2分)(新会区校级期末)如图,将长方形ABCD沿EF翻折,再沿ED翻折,若∠FEA″=105°,则∠CFE= 155 度.解:由四边形ABFE沿EF折叠得四边形A′B′FE,∴∠A′EF=∠AEF.∵∠A′EF=∠A′ED+∠DEF,∠AEF=180°﹣∠DEF.∴∠A′ED+∠DEF=180°﹣∠DEF.由四边形A′B′ME沿AD折叠得四边形A″B″ME,∴∠A′ED=∠A″ED.∵∠A″ED=∠A″EF+∠DEF=105°+∠DEF,∴∠A′ED=105°+∠DEF.∴105°+∠DEF+∠DEF=180°﹣∠DEF.∴∠DEF=25°.∵AD∥BC,∴∠DEF=∠EFB=25°.∴∠CFE=180°﹣∠EFB=180°﹣25°=155°.故答案为:155.17.(2分)(思明区校级期末)如图,将长方形纸片ABCD沿EF折叠后,点A,B分别落在A',B'的位置,再沿AD边将∠A'折叠到∠H处,已知∠1=50°,则∠FEH= 15 °.解:由折叠可知:∠BFE=∠B'FE,∠AEF=∠A'EF,∠A'EG=∠HEG,∵∠1+∠BFE+∠B'FE=180°,∠1=50°,∴∠BFE=65°,∵AD∥BC,∴∠AEF+∠BFE=180°,∴∠AEF=115°,∴∠A'EF=115°,过B'作B'M∥AD,则∠DGB'=∠GB'M,∵AD∥BC,∴∠MB'F=∠1,∴∠1+∠DGB'=∠GB'F=90°,∴∠DGB'=90°﹣50°=40°,∴∠A'GE=∠DGB'=40°,∵∠A'=90°,∴∠HEG=∠A'EG=90°﹣40°=50°,∴∠A'EH=2×50°=100°,∴∠FEH=∠A'EF﹣∠A'EH=115°﹣100°=15°.故答案为:15.18.(2分)(南岗区校级期中)如图,直线MN与直线AB、CD分别交于点E、F,AB∥CD,∠BEF与∠EFD的角平分线交于点P,EP与CD交于点G,点H是MN上一点,且GH⊥EG,连接PH,K是GH上一点使∠PHK=∠HPK,作PQ平分∠EPK,交MN于点Q,∠HPQ:∠QFP=3:2,则∠EHG= 30° .解:∵AB∥CD,∴∠BEF+∠EFD=180°,∵∠BEF与∠EFD的角平分线交于点P,∴∠PEF=∠BEF,∠PFE=∠EFD,∴∠PEF+∠PFE=(∠BEF+∠EFD)=90°,∵∠EPF=180°﹣(∠PEF+∠PFE)=90°,∵GH⊥EG,∴∠EGH=∠EPF=90°,∴FP∥HG,∴∠FPH=∠PHK,∠QFP=∠EHG,设∠PHK=x°,则∠FPH=∠HPK=∠PHK=x°,∠FPK=∠FPH+∠HPK=2x°,∴∠EPK=∠EPF+∠FPK=90°+2x°,∵PQ平分∠EPK,∴∠QPK=∠EPK=(90°+2x°)=45°+x°,∴∠HPQ=∠QPK﹣∠HPK=45°,∵∠HPQ:∠QFP=3:2,∴∠QFP=30°,∴∠EHG=∠QFP=30°;故答案为:30°.19.(2分)(香坊区校级期中)已知AB∥CD,∠ACD=60°,∠BAE:∠CAE=2:3,∠FCD=4∠FCE,若∠AEC=78°,则∠AFC= 88° .解:∵AB∥CD,∴∠CAB=180°﹣∠ACD=180°﹣60°=120°,∵∠BAE:∠CAE=2:3,∴∠CAE=120×=72°,∵∠AEC=78°,∴∠ACE=180°﹣∠AEC﹣∠CAE=180°﹣78°﹣72°=30°,设∠FCE=x,则∠FCD=4x,∴∠ACF=∠ACD﹣∠FCD=60°﹣4x,∴∠ACE=∠ACF+∠ECF=60°﹣3x,∴60°﹣3x=30°,∴x=10°,∴∠ACF=60°﹣40°=20°,∴∠AFC=180°﹣∠ACF﹣∠CAE=180°﹣20°﹣72°=88°,故答案是:88°.20.(2分)(东港区校级期末)把一张对边互相平行的纸条,折成如图所示,EF是折痕,若∠EFB=32°,则下列结论:①∠C'EF=32°;②∠AEC=148°;③∠BGE=64°;④∠BFD=116°.正确的有 3 个.解:∵AC′∥BD′,∴∠C′EF=∠EFB=32°,所以①正确;∵∠C′EF=∠FEC,∴∠C′EC=2×32°=64°,∴∠AEC=180°﹣64°=116°,所以②错误;∴∠BFD=∠EFD′﹣∠BFE=180°﹣2∠EFB=180°﹣64°=116°,所以④正确;∵∠BGE=∠C′EC=2×32°=64°,所以③正确.故答案为3.三.解答题(共7小题,满分60分)21.(6分)(长安区校级期末)如图,直线CD、EF交于点O,OA,OB分别平分∠COE和∠DOE,已知∠1+∠2=90°,且∠2:∠3=2:5.(1)求∠BOF的度数;(2)试说明AB∥CD的理由.解:(1)∵OA,OB分别平分∠COE和∠DOE,∴,,∵∠COE+∠DOE=180°,∴∠2+∠AOC=90°,∵∠COE=∠3,∴,∴,∵∠2:∠3=2:5,∴,∴,∴∠2=40°,∴∠3=100°,∴∠BOF=∠2+∠3=140°;(2)∵∠1+∠2=90°,∠2+∠AOC=90°,∴∠1=∠AOC,∴AB∥CD.22.(6分)(市北区校级期末)如图,已知∠1+∠2=180°,∠B=∠E.(1)试猜想AB与CE之间有怎样的位置关系?并说明理由.(2)若CA平分∠BCE,∠B=50°,求∠A的度数.解:(1)AB∥CE,∵∠1+∠2=180°(已知),∴DE∥BC(同旁内角互补,两直线平行),∴∠ADF=∠B(两直线平行,同位角相等),∵∠B=∠E(已知),∴∠ADF=∠E(等量代换),∴AB∥CE(内错角相等,两直线平行).(2)∵AB∥CE,∴∠B+∠BCE=180°,∵∠B=50°,∴∠BCE=130°,∵CA平分∠BCE,∴∠ACE==65°,∵AB∥CE,∴∠A=∠ACE=65°.23.(6分)(荆门期末)如图,在△ABC中,AD⊥BC于D,G是BA延长线上一点,AH平分∠GAC.且AH∥BC,E是AC上一点,连接BE并延长交AH于点F.(1)求证:AB=AC;(2)猜想并证明,当E在AC何处时,AF=2BD.(1)证明:∵AH平分∠GAC,∴∠GAF=∠FAC,∵AH∥BC,∴∠GAF=∠ABC,∠FAC=∠C,∴∠ABC=∠C,∴AB=AC.(2)解:当AE=EC时,AF=2BD.理由:∵AB=AC,AD⊥BC,∴BD=DC,∵AF∥BC,∴∠FAE=∠C,∵∠AEF=∠CEB,AE=EC,∴△AEF≌△CEB(ASA),∴AF=BC=2BD.24.(10分)(南关区校级期末)已知AM∥CN,点B在直线AM、CN之间,∠ABC=88°.(1)如图1,请直接写出∠A和∠C之间的数量关系: ∠A+∠C=88° .(2)如图2,∠A和∠C满足怎样的数量关系?请说明理由.(3)如图3,AE平分∠MAB,CH平分∠NCB,AE与CH交于点G,则∠AGH的度数为 46° .解:(1))过点B作BE∥AM,如图,∵BE∥AM,∴∠A=∠ABE.∵BE∥AM,AM∥CN,∴BE∥CN.∴∠C=∠CBE.∵∠ABC=88°.∴∠A+∠C=∠ABE+∠CBE=∠ABC=88°.故答案为:∠A+∠C=88°;(2)∠A和∠C满足:∠C﹣∠A=92°.理由:过点B作BE∥AM,如图,∵BE∥AM,∴∠A=∠ABE.∵BE∥AM,AM∥CN,∴BE∥CN.∴∠C+∠CBE=180°.∴∠CBE=180°﹣∠C.∵∠ABC=88°.∴∠ABE+∠CBE=88°.∴∠A+180°﹣∠C=88°.∴∠C﹣∠A=92°.(3)设CH与AB交于点F,如图,∵AE平分∠MAB,∴∠GAF=∠MAB.∵CH平分∠NCB,∴∠BCF=∠BCN.∵∠B=88°,∴∠BFC=88°﹣∠BCF.∵∠AFG=∠BFC,∴∠AFG=88°﹣∠BCF.∵∠AGH=∠GAF+∠AFG,∴∠AGH=(∠BCN﹣∠MAB).由(2)知:∠BCN﹣∠MAB=92°,∴∠AGH=×92°=46°.故答案为:46°.25.(10分)(铜梁区校级月考)课题学习:平行线的“等角转化”功能.(1)阅读理解:如图1,已知点A是BC外一点,连接AB、AC,求∠B+∠BAC+∠C的度数.阅读并补充下面推理过程.解:过点A作ED∥BC,∴∠B= ∠EAB ,∠C= ∠DAC ,∵∠EAB+∠BAC+∠DAC=180°,∴∠B+∠BAC+∠C=180°.解题反思:从上面的推理过程中,我们发现平行线具有“等角转化”的功能,将∠BAC、∠B、∠C“凑”在一起,得出角之间的关系,使问题得以解决.(2)方法运用:如图2,已知AB∥ED,求∠B+∠BCD+∠D的度数;(3)深化拓展:已知AB∥CD,点C在点D的右侧,∠ADC=50°,BE平分∠ABC,DE平分∠ADC,BE,DE所在的直线交于点E,点E在直线AB与CD之间.①如图3,点B在点A的左侧,若∠ABC=36°,求∠BED的度数.②如图4,点B在点A的右侧,且AB<CD,AD<BC.若∠ABC=n°,求∠BED度数.(用含n的代数式表示)解:(1)∵ED∥BC,∴∠B=∠EAB,∠C=∠DAC(两直线平行,内错角相等);故答案为:∠EAB;∠DAC;(2)过C作CF∥AB,∵AB∥DE,∴CF∥DE,∴∠D+∠FCD=180°,∵CF∥AB,∴∠B+∠FCB=180°,∴∠B+∠FCB+∠FCD+∠D=360°,∴∠B+∠BCD+∠D=360°;(3)①过E作EG∥AB,∵AB∥DC,∴EG∥CD,∴∠GED=∠EDC,∵DE平分∠ADC,∴,∴∠GED=25°,∵BE平分∠ABC,∴,∵GE∥AB,∴∠BEG=∠ABE=18°,∴∠BED=∠GED+∠BEG=25°+18°=43°;②过E作PE∥AB,∵AB∥CD,∴PE∥CD,∴∠PED=∠EDC=25°,∵BE平分∠ABC,∠ABC=n°,∴,∵AB∥PE,∴∠ABE+∠PEB=180°,∴,∴.26.(10分)(铁东区校级月考)如图1为北斗七星的位置图,如图2将北斗七星分别标为A,B,C,D,E,F,G,将A,B,C,D,E,F顺次首尾连接,若AF恰好经过点G,且B,G,C在一条直线上,若AF∥DE,∠B=∠C+9°,∠D=∠E=105°.(1)求∠F的度数.(2)计算∠B﹣∠CGF的度数是 115° .(3)连接AD,当∠ADE与∠CGF满足怎样数量关系时,BC∥AD.并说明理由,解:(1)∵AF∥DE,∴∠F+∠E=180°,∴∠F=180°﹣105°=75°;(2)延长DC交AF于K,可得:∠B﹣∠CGF=∠C+10°﹣∠CGF=∠GKC+10°=∠D+9°=114°,故答案为:114°;(3)当∠ADE+∠CGF=180°时,BC∥AD,∵AF∥DE,∴∠GAD+∠ADE=180°,∠ADE+∠CGF=180°,∴∠GAD=∠CGF,∴BC∥AD.27.(12分)(江汉区校级月考)如图1,直线l分别交直线AB、CD于点EF(点在点F的右侧).若∠1+∠2=180°.(1)求证:AB∥CD;(2)如图2,点H在直线AB、CD之间,过点H作HG⊥AB于点G,若FH平分∠EFD,∠2=120°,求∠FHG的度数.(3)如图3,直线MN与直线AB、CD分别交于点M、N,若∠EMN=120°,点P为线段EF上一动点,Q为直线CD上一动点,请直接写出∠PMN与∠MPQ,∠PQF之间的数量关系.(题中的角均指大于0°且小于180°的角)(1)证明:∵∠1+∠2=180°,∠2+∠DFE=180°,∴∠1=∠DFE(同角的补角相等),∴AB∥CD(同位角相等,两直线平行);(2)解:如图所示,过点H作HP∥AB,则HP∥AB∥CD,∵GH∥AB,即∠EGH=90°,∴∠PHG=180°﹣∠EGH=90°,∵∠2=120°,∴∠EFD=180°﹣∠2=60°,∵FH平分∠EFD,∴∠HFD=30°,∵PH∥CD,∴∠PHF=∠HFD=30°,∴∠FHG=∠PHF+∠PHG=120°;(3)解:如图3﹣1,当点Q在线段FN上时,过点P作PH∥AB,则PH∥AB∥CD,∴∠EMP=∠MPH,∠PQF=∠HPQ,∴∠MPQ+∠PMN﹣∠PQF=∠MPQ﹣∠HPQ+∠PMN=∠MPH+∠PMN=∠EMP+∠PMN=∠EMN=120°;如图3﹣2,当点Q在FN的延长线上时,过点P作PH∥AB,则PH∥AB∥CD,∴∠EMP=∠MPH,∠PQF=∠HPQ,∴∠MPQ+∠PMN﹣∠PQF=∠MPQ+∠PMN﹣∠HPQ=∠MPH+∠PMN=∠EMP+∠PMN=∠EMN=120°;如图3﹣3(1),当点Q在NF的延长线上且点Q在直线MP的右侧时,过点P作PH∥AB,则PH∥AB∥CD,∴∠EMP=∠MPH,∠PQF+∠HPQ=180°,∴∠MPQ+∠PMN+∠PQF=∠MPQ+180°﹣∠HPQ+∠PMN=∠MPH+∠PMN+180°=∠EMP+∠PMN+180°=∠EMN+180°=300°;如图3﹣3(2),当点Q在NF的延长线上且点Q在直线MP的右侧时,过点P作PH∥AB,则PH∥AB∥CD,∴∠EMP+∠MPH=180°,∠PQF=∠HPQ,∴∠MPQ﹣∠PMN﹣∠PQF=∠MPQ﹣∠PMN﹣∠HPQ=∠MPH﹣∠PMN=180°﹣∠EMP﹣∠PMN=180°﹣∠EMN=60°;综上,∠PMN与∠MPQ,∠PQF之间的数量关系为:∠MPQ+∠PMN﹣∠PQF=120°或∠MPQ+∠PMN+∠PQF=300°或∠MPQ+∠PMN﹣∠PQF=60°
    • 精品推荐
    • 所属专辑

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        2024七年级数学下册专题01平行线的判定和性质试题(附解析浙教版)
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map