![综合解析-人教版数学八年级上册期末综合训练试题 (B)卷(解析卷)01](http://img-preview.51jiaoxi.com/2/3/15597259/0-1712713599598/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![综合解析-人教版数学八年级上册期末综合训练试题 (B)卷(解析卷)02](http://img-preview.51jiaoxi.com/2/3/15597259/0-1712713599714/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![综合解析-人教版数学八年级上册期末综合训练试题 (B)卷(解析卷)03](http://img-preview.51jiaoxi.com/2/3/15597259/0-1712713599753/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
综合解析-人教版数学八年级上册期末综合训练试题 (B)卷(解析卷)
展开1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 35分)
一、单选题(5小题,每小题3分,共计15分)
1、计算的结果是( )
A.B.C.1D.
2、给出下列命题,正确的有( )个①等腰三角形的角平分线、中线和高重合; ②等腰三角形两腰上的高相等; ③等腰三角形最小边是底边;④等边三角形的高、中线、角平分线都相等;⑤等腰三角形都是锐角三角形
A.1个B.2个C.3个D.4个
3、下列说法:①若,则为的中点②若,则是的平分线③,则④若,则,其中正确的有( )
A.1个B.2个C.3个D.4个
4、下图所示的五角星是用螺栓将两端打有孔的5根木条连接构成的图形,它的形状不稳定,如果在木条交叉点打孔加装螺栓的办法使其形状稳定,那么至少需要添加( )个螺栓
A.1B.2
C.3D.4
5、如图,足球图片正中的黑色正五边形的内角和是( ).
A.180°B.360°C.540°D.720°
二、多选题(5小题,每小题4分,共计20分)
1、下列各式从左到右的变形不正确的是( )
A. =B.
C.D.
2、如图,是的角平分线,,分别是和的高,连接交于点G.下列结论正确的为( )
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
A.垂直平分B.平分
C.平分D.当为时,是等边三角形
3、下列关于的方程,不是分式方程的是( )
A.B.
C.D.
4、下列计算不正确的是( )
A.(﹣1)0=﹣1
B.
C.
D.用科学记数法表示﹣0.0000108=1.08×10﹣5
5、下列“慢行通过,注意危险,禁止行人通行,禁止非机动车通行”四个交通标志图(黑白阴影图片)中不是轴对称图形的是( )
A.B.
C.D.
第Ⅱ卷(非选择题 65分)
三、填空题(5小题,每小题5分,共计25分)
1、填空:
(1)(___)2=(a+____)(a-___);
(2)(_____)2-b2=(____+b)(___-b).
2、如图,在矩形ABCD中,AB=8cm,AD=12cm,点P从点B出发,以2cm/s的速度沿BC边向点C运动,到达点C停止,同时,点Q从点C出发,以vcm/s的速度沿CD边向点D运动,到达点D停止,规定其中一个动点停止运动时,另一个动点也随之停止运动.当v为______时,△ABP与△PCQ全等.
3、如图,,若,则________.
4、若a+b=4,a﹣b=1,则(a+1)2﹣(b﹣1)2的值为_____.
5、如图,将矩形ABCD沿MN折叠,使点B与点D重合,若∠DNM=75°,则∠AMD=_____.
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
四、解答题(5小题,每小题8分,共计40分)
1、如图,在中,D是边上的点,,垂足分别为E,F,且.求证:.
2、如图,在平面直角坐标系中,A(-2,4),B(-3,1),C(1,-2).
(1)在图中作出△ABC关于y轴的对称图形△A′B′C′;
(2)写出点A′、B′、C′的坐标;
(3)连接OB、OB′,请直接回答:
①△OAB的面积是多少?
②△OBC与△OB′C′这两个图形是否成轴对称.
3、已知,求的值.
4、如图,D是△ABC的边AC上一点,点E在AC的延长线上,ED=AC,过点E作EF∥AB,并截取EF=AB,连接DF.求证:DF=CB.
5、解方程:.
-参考答案-
一、单选题
1、C
【解析】
【分析】
根据同分母分式的加法法则,即可求解.
【详解】
解:原式=,
故选C.
【考点】
本题主要考查同分母分式的加法法则,掌握”同分母分式相加,分母不变,分子相加“是解题的关键.
2、B
【解析】
【详解】
解:①等腰三角形的顶角角平分线、底边上的中线和底边上的高重合,故本选项错误;
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
②等腰三角形两腰上的高相等,本选项正确;
③等腰三角形最小边不一定底边,故本选项错误;
④等边三角形的高、中线、角平分线都相等,本选项正确;
⑤等腰三角形可以是钝角三角形,故本选项错误,
故选B
3、A
【解析】
【分析】
根据直线中点、角平分线、有理数大小比较以及绝对值的性质,逐一判定即可.
【详解】
当三点不在同一直线上的时候,点C不是AB的中点,故错误;
当OC位于∠AOB的内部时候,此结论成立,故错误;
当为负数时,,故错误;
若,则,故正确;
故选:A.
【考点】
此题主要考查直线中点、角平分线、有理数大小比较以及绝对值的性质,熟练掌握,即可解题.
4、A
【解析】
【分析】
用木条交叉点打孔加装螺栓的办法去达到使其形状稳定的目的,可用三角形的稳定性解释.
【详解】
如图,A点加上螺栓后,根据三角形的稳定性,原不稳定的五角星中具有了稳定的各边
故答案为:A.
【考点】
本题考查了三角形的稳定性的问题,掌握三角形的稳定性是解题的关键.
5、C
【解析】
【分析】
根据多边形内角和公式即可求出结果.
【详解】
解:黑色正五边形的内角和为:,
故选C.
【考点】
本题考查了多边形的内角和公式,解题关键是牢记多边形的内角和公式.
二、多选题
1、BCD
【解析】
【分析】
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
根据分式的基本性质,即可求解.
【详解】
解:A、 的分子、分母同时乘以2,得到,故本选项正确,不符合题意;
B、,故本选项错误,符合题意;
C、,故本选项错误,符合题意;
D、,故本选项错误,符合题意;
故选:BCD.
【考点】
本题主要考查了分式的基本性质,熟练掌握分式的分子分母同时加上(或减去)同一个整式,分式的值不变;分式的分子分母同时乘以(或除以)同一个不等于0的整式,分式的值不变是解题的关键.
2、ACD
【解析】
【分析】
根据角平分线性质求出DE=DF,证Rt△AED≌Rt△AFD,推出AE=AF,再逐个判断即可.
【详解】
解:∵AD是△ABC的角平分线,DE,DF分别是△ABD和△ACD的高,
∴DE=DF,∠AED=∠AFD=90°,
在Rt△AED和Rt△AFD中,
,
∴Rt△AED≌Rt△AFD(HL),
∴AE=AF,∠ADE=∠ADF,
∴AD平分∠EDF;C正确;
∵AD平分∠BAC,
∵AE=AF,DE=DF,
∴AD垂直平分EF,A正确;B错误,
∵∠BAC=60°,
∴AE=AF,
∴△AEF是等边三角形,D正确.
故选:ACD.
【考点】
本题考查了全等三角形的性质和判定,正方形的判定,角平分线性质的应用,能求出Rt△AED≌Rt△AFD是解此题的关键.
3、ABC
【解析】
【分析】
根据分式方程的定义:分母里含有字母的方程叫做分式方程进行判断.
【详解】
解:A、分母中不含未知数,不是分式方程,符合题意;
B、分母中不含未知数,不是分式方程,符合题意;
C、分母中不含未知数,不是分式方程,符合题意;
D、分母中含未知数,是分式方程,不符合题意;
故选:ABC.
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
【考点】
判断一个方程是否为分式方程,主要是依据分式方程的定义,也就是看分母中是否含有未知数(注意:仅仅是字母不行,必须是表示未知数的字母).
4、ABCD
【解析】
【分析】
根据负整数指数幂和科学计算法的计算方法进行求解判断即可.
【详解】
解:A、,故此选项符合题意;
B、,故此选项符合题意;
C、,故此选项符合题意;
D、用科学记数法表示,故此选项符合题意;
故选ABCD.
【考点】
本题主要考查了负整数指数幂和科学计算法,解题的关键在于能够熟练掌握相关计算法则.
5、ACD
【解析】
【分析】
根据轴对称图形的概念对各选项分析判断即可得出答案.轴对称:在平面内,如果一个图形沿一条直线对折,对折后的两部分都能完全重合,这样的图形叫做轴对称图形,这条直线就是其对称轴.
【详解】
解:A、不是轴对称图形,故本选项符合题意;
B、是轴对称图形,故本选项不符合题意;
C、不是轴对称图形,故本选项符合题意;
D、不是轴对称图形,故本选项符合题意.
故选:ACD.
【考点】
本题考查了轴对称图形,掌握轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.
三、填空题
1、 5或-5 5或 -5 -5或5 6或-6 6 或 -6 -6或 6
【解析】
【分析】
(1)分析式子中25可以写成,这样就出现了两个数的平方差,所以利用平方差公式解题即可.
(2)分析式子中36可以写成,这样就出现了两个数的平方差,所以利用平方差公式解题即可.
【详解】
(1)
或
(2)
或
【考点】
本题主要考查利用平方差公式分解因式:,掌握公式是解题的关键.
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
2、2或
【解析】
【详解】
可分两种情况:①△ABP≌△PCQ得到BP=CQ,AB=PC,②△ABP≌△QCP得到BA=CQ,PB=PC,然后分别计算出t的值,进而得到v的值.
【解答】
解:①当BP=CQ,AB=PC时,△ABP≌△PCQ,
∵AB=8cm,
∴PC=8cm,
∴BP=12﹣8=4(cm),
∴2t=4,解得:t=2,
∴CQ=BP=4cm,
∴v×2=4,
解得:v=2;
②当BA=CQ,PB=PC时,△ABP≌△QCP,
∵PB=PC,
∴BP=PC=6cm,
∴2t=6,解得:t=3,
∵CQ=AB=8cm,
∴v×3=8,
解得:v=,
综上所述,当v=2或时,△ABP与△PQC全等,
故答案为:2或.
【考点】
此题考查了动点问题,全等三角形的性质的应用,解一元一次方程,正确理解全等三角形的性质得到相等的对应边求出t是解题的关键.
3、100
【解析】
【分析】
先根据EC=EA.∠CAE=40°得出∠C=40°,再由三角形外角的性质得出∠AED的度数,利用平行线的性质即可得出结论.
【详解】
∵EC=EA,∠CAE=40°,
∴∠C=∠CAE=40°,
∵∠DEA是△ACE的外角,
∴∠AED=∠C+∠CAE=40°+40°=80°,
∵AB∥CD,
∴∠BAE+∠AED=180°
∴∠BAE =100°.
【考点】
本题考查的是等边对等角,三角形的外角,平行线的性质,熟知两直线平行同旁内角互补是解答此题的关键.
4、12
【解析】
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
【分析】
对所求代数式运用平方差公式进行因式分解,然后整体代入求值.
【详解】
解:∵a+b=4,a﹣b=1,
∴(a+1)2﹣(b﹣1)2
=(a+1+b﹣1)(a+1﹣b+1)
=(a+b)(a﹣b+2)
=4×(1+2)
=12.
故答案是:12.
【考点】
本题考查了公式法分解因式,属于基础题,熟练掌握平方差公式的结构特征即可解答.
5、30°##30度
【解析】
【分析】
由题意,根据平行线的性质和折叠的性质,可以得到∠BMD的度数,从而可以求得∠AMD的度数,本题得以解决.
【详解】
解:∵四边形ABCD是矩形,
∴DN∥AM,
∵∠DNM=75º,
∴∠DNM=∠BMN=75º,
∵将矩形ABCD沿MN折叠,使点B与点D重合,
∴∠BMN=∠NMD=75º,
∴∠BMD=150º,
∴∠AMD=30º,
故答案为:30º.
【考点】
本题考查了矩形的性质、平行线的性质、折叠的性质,属于基础常考题型,难度适中,熟练掌握这些知识的综合运用是解答的关键.
四、解答题
1、见解析
【解析】
【分析】
由得出,由SAS证明,得出对应角相等即可.
【详解】
证明:∵,
∴.
在和中,
∴,
∴.
【考点】
本小题考查垂线的性质、全等三角形的判定与性质、等基础知识,考查推理能力、空间观念与几何直观.
2、(1)见解析;(2)A′(2,4),B′(3,1),C′(-1,-2);(3)①5;②是;△OBC与· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
△OB′C′这两个图形关于y轴成轴对称.
【解析】
【分析】
(1)先确定A、B、C关于y轴的对称点A′、B′、C′,然后再顺次连接即可;
(2)直接根据图形读出A′、B′、C′的坐标即可;
(3)①运用△OAB所在的矩形面积减去三个三角形的面积即可;
②根据图形看△OBC与△OB′C′是否有对称轴即可解答.
【详解】
解:(1)如图;△A′B′C′即为所求;
(2)如图可得:A′(2,4).B′(3,1).C′(-1,-2);
(3)①△OAB的面积为:4×3-×3×1-×4×2-×3×1=5;
②∵△OBC与△OB′C′这两个图形关于y轴成轴对称
∴△OBC与△OB′C′这两个图形关于y轴成轴对称.
【考点】
本题主要考查了轴对称变换和不规则三角形面积的求法,作出△ABC关于y轴的对称图形△A′B′C′以及运用拼凑法求不规则三角形的面积成为解答本题的关键.
3、-4
【解析】
【分析】
根据已知求出xy=-2,再将所求式子变形为,代入计算即可.
【详解】
解:∵,
∴,
∴,
∴.
【考点】
本题考查了代数式求值,解题的关键是掌握分式的运算法则和因式分解的应用.
4、证明过程见解析
【解析】
【分析】
根据EF∥AB,得到,再根据已知条件证明,即可得解;
【详解】
∵EF∥AB,
∴,
在和中,
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
,
∴,
∴;
【考点】
本题主要考查了全等三角形的判定与性质,准确分析判断是解题的关键.
5、x=3
【解析】
【分析】
分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.
【详解】
解:方程的两边同乘x−1,得:,
解这个方程,得:x=3,
检验,把x=3代入x−1=3-1=2≠0,
∴原方程的解是x=3.
【考点】
此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.
综合解析-人教版数学八年级上册期末综合训练试题 (B)卷(详解版): 这是一份综合解析-人教版数学八年级上册期末综合训练试题 (B)卷(详解版),共22页。
综合解析人教版数学八年级上册期末综合训练试题 (B)卷(解析卷): 这是一份综合解析人教版数学八年级上册期末综合训练试题 (B)卷(解析卷),共19页。
综合解析-人教版数学八年级上册期末综合训练试题 (B)卷(含详解): 这是一份综合解析-人教版数学八年级上册期末综合训练试题 (B)卷(含详解),共20页。