![9.5 十字相乘法 苏科版七年级数学下册精讲精练巩固篇(含答案)第1页](http://img-preview.51jiaoxi.com/2/3/15562470/0-1711959365903/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![9.5 十字相乘法 苏科版七年级数学下册精讲精练巩固篇(含答案)第2页](http://img-preview.51jiaoxi.com/2/3/15562470/0-1711959365953/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![9.5 十字相乘法 苏科版七年级数学下册精讲精练巩固篇(含答案)第3页](http://img-preview.51jiaoxi.com/2/3/15562470/0-1711959365976/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
初中数学苏科版七年级下册9.5 多项式的因式分解课后练习题
展开
这是一份初中数学苏科版七年级下册9.5 多项式的因式分解课后练习题,共12页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
1.把多项式分解因式,其结果是( )
A.B.
C.D.
2.若多项式可因式分解为,其中、、均为整数,则的值是( )
A.1B.7C.11D.13
3.下列四个多项式,可能是x2+mx-3 (m是整数)的因式的是( )
A.x-2B.x+3C.x+4D.x2-1
4.计算结果为a2﹣5a﹣6的是( )
A.(a﹣6)(a+1)B.(a﹣2)(a+3)
C.(a+6)(a﹣1)D.(a+2)(a﹣3)
5.若,则的值不可能为( )
A.14B.16C.2D.-14
6.分解结果等于的多项式是( ).
A.B.
C.D.
7.不能用十字相乘法分解的是( ).
A.B.
C.D.
8.已知x2−5xy+6y2=0,则等于( )
A.或B.2或3C.1或D.6或1
9.下列分解因式错误的是( )
A.B.
C.D.
10.下列因式分解,错误的是( )
A.x2+7x+10=(x+2)(x+5)B.x2﹣2x﹣8=(x﹣4)(x+2)
C.y2﹣7y+12=(y﹣3)(y﹣4)D.y2+7y﹣18=(y﹣9)(y+2)
二、填空题
11.因式分解:=______.
12.因式分解:2a2-4a-6=________.
13.因式分解:=__________.
14.二元二次方程x2﹣2xy﹣3y2=0分解为两个一次方程的结果为_______.
15.因式分解:x3﹣6x2+11x﹣6=_____.
16.已知关于x的多项式x2+kx﹣3能分解成两个一次多项式的积,那么整数k的值为 _____.
17.若二次三项式可以分解成与的积的形式,则m=________,n=________.
18.如图所示,若用2张1号正方形卡片,2张2号正方形卡片,5张3号长方形卡片拼成一个大的长方形,则这个大的长方形的长和宽可分别表示为_____,_____.
三、解答题
19.因式分解:
(1) (2) (3) .
20.分解因式
(1) ;(2) ;
;(4) .
21.分解因式
(1) ;(2) ;(3) .
22.在因式分解的学习中我们知道对二次三项式可用十字相乘法方法得出,用上述方法将下列各式因式分解:
(1) __________.
(2) __________.
(3) __________.
(4) __________.
23.已知,整式,整式.
(1) 若,求的值;
(2) 若可以分解为,请将进行因式分解.
24.通常情况下,用两种不同的方法计算同一图形的面积,可以得到一个恒等式.
图1可以得到,基于此,请解答下列问题:
根据图2,写出一个代数恒等式:___________;
利用(1)中的结论对下列多项式进行因式分解:___________.
类似地,用两种不同的方法计算几何体的体积同样可以得到一些代数恒等式.图3表示的是一个边长为x的正方体挖去一个边长为2的小长方体后重新拼成一个新长方体.请你根据图3中两个图形的变化关系,写出一个代数恒等式:___________.
参考答案
1.B
【分析】因为−6×9=−54,−6+9=3,所以利用十字相乘法分解因式即可.
解:x2+3x−54=(x−6)(x+9);
故选:B.
【点拨】本题考查十字相乘法分解因式,运用十字相乘法分解因式时,要注意观察,尝试,并体会它实质是二项式乘法的逆过程.
2.B
【分析】将多项式5x2+17x-12进行因式分解后,确定a、b、c的值即可.
解:因为5x2+17x-12=(x+4)(5x-3)=(x+a)(bx+c),
所以a=4,b=5,c=-3,
所以a-c=4-(-3)=7,
故选:B.
【点拨】本题考查十字相乘法分解因式,掌握十字相乘法是正确分解因式的前提,确定a、b、c的值是得出正确答案的关键.
3.B
【分析】将原式利用十字相乘分解因式即可得到答案.
解:∵k为整数,且常数项﹣3=(﹣1)×3=(﹣3)×1,
∴或,
故选B.
【点拨】此题考查因式分解,根据二次项和常数项将多项式分解因式是解题的关键.
4.A
【分析】根据十字相乘法分解因式即可.
解:a2﹣5a﹣6=(a﹣6)(a+1).
故选:A.
【点拨】本题考查十字相乘法分解因式,解题关键是运用十字相乘法分解因式时,要注意观察,尝试,并体会它实质是二项式乘法的逆过程.
5.B
【分析】根据,分类讨论的取值,对各选项分析判断后利用排除法求解.
解:根据,的值可以是:-1,15;1,-15;-3,5;3,-5四种,
;
;
;
所以不可能是16,
故选:B
【点拨】本题考查了因式分解-十字相乘法,熟练掌握十字相乘法是解本题的关键.
6.A
【分析】原式利用多项式乘以多项式法则计算即可.
解:分解因式的结果为(x+y-4)(x+y-5)的多项式是(x+y)2-9(x+y)+20,
故选A.
【点拨】此题考查因式分解-十字相乘法,熟练掌握十字相乘的方法是解题的关键.
7.B
【分析】根据十字相乘法逐一判断可得.
解:A、x2+x-2=(x-1)(x+2),此选项不符合题意;
B、3x2-10x2+3x不能利用十字相乘法分解,此选项符合题意;
C、x2-3x+2=(x-1)(x-2),此选项不符合题意;
D、x2-6xy-7y2=(x-7y)(x+y),此选项不符合题意;
故选B.
【点拨】此题考查因式分解-十字相乘法,解题的关键是掌握某些二次项的系数是1的二次三项式因式分解:x2+(p+q)x+pq=(x+p)(x+q).
8.A
【分析】方程两边除以x2,求出解即可.
解:∵x2−5xy+6y2=0,
∴1−5•+6•()2=0,即(−)(−)=0,
解得:=或,
故选A.
【点拨】此题考查了因式分解−十字相乘法,熟练掌握十字相乘的方法是解本题的关键.
9.D
【分析】利用提公因式法或公式法分解因式后,对各选项分析判断.
解:A. ,正确;
B. ,正确;
C. ,正确;
D. ,故本选项错误,
故选D.
【点拨】本题考查了分解因式.分解因式的方法和规律:多项式有2项时考虑提公因式法和平方差公式;多项式有3项时考虑提公因式法和完全平方公式(个别的需要十字相乘或求根公式法);多项式有3项以上时,考虑分组分解法,再根据2项式和3项式的分解方法进行分解.
10.D
【分析】直接利用十字相乘法分解因式进而判断得出答案.
解:A、x2+7x+10=(x+2)(x+5),正确,不合题意;
B、x2﹣2x﹣8=(x﹣4)(x+2),正确,不合题意;
C、y2﹣7y+12=(y﹣3)(y﹣4),正确,不合题意;
D、y2+7y﹣18=(y+9)(y﹣2),故原式错误,符合题意.
故选D.
【点拨】此题主要考查了十字相乘法分解因式,正确分解常数项是解题关键.
11.
【分析】利用十字相乘法因式分解.
解:.
故答案是:.
【点拨】本题考查因式分解,解题的关键是掌握用十字相乘法因式分解的方法.
12.2(a-3)(a+1)## 2(a+1)(a-3)
【分析】提取公因式2,再用十字相乘法分解因式即可.
解:2a2-4a-6=2(a2-2a-3)=2(a-3)(a+1)
故答案为:2(a-3)(a+1)
【点拨】本题考查了本题考查了提公因式法与十字相乘法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说如果可以先提取公因式的要先提取公因式,再考虑运用公式法或十字相乘法分解因式,分解因式要彻底是解题关键.
13.(a-4b)(a+b)
【分析】利用十字相乘法进行因式分解.
解:原式=(a-4b)(a+b).
故答案是:(a-4b)(a+b).
【点拨】此题考查十字相乘法分解因式,对常数项的不同分解是解题的关键.
14.x﹣3y=0;x+y=0
【分析】把等号左边的二次三项式因式分解即可求得.
解:∵x2﹣2xy﹣3y2=0,
∴(x﹣3y)(x+y)=0.
∴x﹣3y=0或x+y=0.
故答案为:x﹣3y=0;x+y=0.
【点拨】本题考查了因式分解法解方程等知识点.解决本题的关键是利用合适的方法把等号左边的多项式因式分解.
15.(x﹣3)(x﹣2)(x﹣1)
【分析】首先将11x拆项,进而利用提取公因式法以及公式法分解因式进而得出答案.
解:x3﹣6x2+11x﹣6
=x3﹣6x2+9x+2x﹣6
=x(x2﹣6x+9)+2(x﹣3)
=x(x﹣3)2+2(x﹣3)
=(x﹣3)[x(x﹣3)+2]
=(x﹣3)(x2﹣3x+2)
=(x﹣3)(x﹣2)(x﹣1).
故答案为:(x﹣3)(x﹣2)(x﹣1).
【点拨】此题主要考查了分组分解法分解因式,正确分组是解题关键.
16.
【分析】把常数项分解成两个整数的乘积,k就等于那两个整数之和.
解:∵﹣3=﹣3×1或﹣3=﹣1×3,
∴k=﹣3+1=﹣2或k=﹣1+3=2,
∴整数k的值为:±2,
故答案为:±2.
【点拨】本题考查因式分解—十字相乘法,是重要考点,掌握相关知识是解题关键.
17. 1
【分析】利用多项式乘以多项式法则计算(x-3)(x+4),得到结果与已知多项式相等,即可求出m,n的值.
解:由题意:x2+mx+n=(x-3)(x+4),
而(x-3)(x+4)=x2+4x-3x-12=x2+x-12,
则m=1,n=-12.
故答案为:1,-12.
【点拨】此题考查了因式分解-十字相乘法,弄清题意是解本题的关键.
18. 2a+b a+2b
【分析】先计算出拼成的长方形的面积,根据所拼成的长方形面积,因式分解可解决本题.
解:由题意知,拼成的长方形面积为:2a2+2b2+5ab
=(2a+b)(a+2b)
所以拼成的大长方形的长和宽分别为:2a+b、a+2b.
故答案为:2a+b,a+2b.
【点拨】本题考查了多项式的因式分解.理解拼成的长方形的面积与各个小长方形的面积间关系是解决本题的关键.
19.(1) (2) (3)
【分析】(1)利用平方差公式进行因式分解
(2)先提取公因式,再利用完全平方公式进行因式分解
(3)用十字相乘法进行因式分解
(1)解:
(2)解:
(3)解:
【点拨】本题考查利用公式法和十字相乘法进行因式分解,熟练掌握完全平方公式、平方差公式是解题的关键.
20.(1)(2)(3)(4)
【分析】(1)利用十字相乘法分解因式即可;
(2)利用十字相乘法分解因式即可;
(3)首先提取公因式,然后再用十字相乘法分解因式即可;
(4)利用十字相乘法分解因式即可.
(1)解:
;
(2)解:
;
(3)解:
;
(4)解:
.
【点拨】本题考查了因式分解,解本题的关键在熟练掌握利用十字相乘法分解因式.
21.(1) (2) (3)
【分析】(1)先提公因式,然后利用完全平方公式继续分解即可;
(2)先提公因式,然后利用平方差公式继续分解即可;
(3)利用十字相乘法分解即可.
(1)解:
=
=;
(2)解:
=
=;
(3)解:
=.
【点拨】本题考查了因式分解——十字相乘法,提公因式法与公式法的综合运用,一定要注意如果多项式的各项含有公因式,必须先提公因式.
22.(1) (x-y)(x+6y)(2) (x-3a)(x-a-2)(3) (x+a-3b)(x-a-2b)(4) (20182x2+1)(x-1)
【分析】(1)将-6y2改写成-y·6,然后根据例题分解即可;
(2)将3a2+6a改写成,然后根据例题分解即可;
(3)先化简,将改写,然后根据例题分解即可;
(4)将改写成(2018-1)(2018+1),变形后根据例题分解即可;
(1)解:原式=
=(x-y)(x+6y);
(2)解:原式=
=(x-3a)(x-a-2);
(3)解:原式=
=
=
=(x+a-3b)(x-a-2b);
(4)解:原式=
=
=
=(20182x+1)(x-1) .
【点拨】本题考查了十字相乘法因式分解,熟练掌握二次三项式可用十字相乘法方法得出是解答本题的关键.
23.(1) 1(2) =
【分析】(1)根据等式列式整理即可得到a的值;
(2)先根据可以分解为,求出a=8,再代入A+B-16中,利用十字相乘法分解因式即可.
(1)解:∵整式,整式,
∴,
整理得,
∴3+a=4,
解得a=1;
(2)∵可以分解为,
∴,
∴,
∴3-a=-5,
解得a=8,
∴A+B-16=.
【点拨】此题考查了整式的混合运算,多项式的因式分解,正确掌握整式混合运算法则及多项式因式分解的方法是解题的关键.
(1) (2)
(3)
【分析】(1)看图列恒等式即可;
(2)将原式因式分解即可;
(3)看图列恒等式即可;
(1)解:根据题意,
(2)根据因式分解方法即可得,
(3)根据图3两几何体的体积相等,即可列等式:
【点拨】本题主要考查因式分解、列恒等式,掌握相关运算法则,正确列出恒等式是解题的关键.
相关试卷
这是一份初中数学苏科版七年级下册9.5 多项式的因式分解综合训练题,共10页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
这是一份初中数学苏科版七年级下册9.5 多项式的因式分解一课一练,共11页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
这是一份初中数学苏科版七年级下册9.5 多项式的因式分解测试题,共11页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
![文档详情页底部广告位](http://img.51jiaoxi.com/images/257d7bc79dd514896def3dc0b2e3f598.jpg)