最新中考几何专项复习专题06 半角模型巩固练习(提优)
展开高效的课堂教学模式是保证高效的复习效果的前提,学生在教师的指导和辅导下进行先自学、探究和及时训练,获得知识、发展能力的一种教学模式。
策略二 专题内容的设计应遵循教与学的认知规律和学生心理发展规律,凸显方法规律,由简单到复杂,由特殊到一般,再由一般到特殊
总结规律,推广一般。从一般到特殊:抛砖引玉,解决问题。
策略三 设计专题内容时考虑建立几何模型,体现思想方法,让学生驾轻就熟,化难为易,化繁为简。
几何,常常因为图形变化多端,方法多种多样而被称为数学中的变形金刚。题目千变万化,但万变不离其宗。
半角模型巩固练习(提优)
1.如图,在四边形ABCD中,∠B+∠D=180º,AB=AD,E、F分别是线段BC、CD上的点,且BE+FD=EF,求证:∠EAF=∠BAD.
2.已知,在正方形ABCD中,∠MAN=45º,∠MAN绕点A顺时针旋转,它的两边分别交CB、DC(或它们的延长线)于点M、N,当∠MAN绕点A旋转到BM=DN时(如图1),易证BM+DN=MN.
(1)当∠MAN绕点A旋转到BM≠DN时 (如图2),线段BM、DN、和MN之间有怎样的数量关系?猜想一下,并加以证明;
(2)当∠MAN绕点A旋转到如图3的位置时,线段BM、DN和MN之间又有怎样的数量关系?请直接写出你的猜想.
3.已知在中,,,于,点在直线上,,点F在线段上,是的中点,直线与直线交于点.
(1)如图1,若点在线段上,请分别写出线段和之间的位置关系和数量关系:___________,___________;
(2)在(1)的条件下,当点在线段上,且时,求证:;
(3)当点在线段的延长线上时,在线段上是否存在点,使得.若存在,请直接写出的长度;若不存在,请说明理由.
4.(1)如图1,点E、F分别是正方形ABCD的边BC、CD上的点,∠EAF=45°,连接EF,则EF、BE、FD之间的数量关系是:EF=BE+FD.连结BD,交AE、AF于点M、N,且MN、BM、DN满足,请证明这个等量关系;
(2)在△ABC中, AB=AC,点D、E分别为BC边上的两点.
①如图2,当∠BAC=60°,∠DAE=30°时,BD、DE、EC应满足的等量关系是__________________;
②如图3,当∠BAC=,(0°<<90°),∠DAE=时,BD、DE、EC应满足的等量关系是____________【参考:】
5.已知如图1,四边形ABCD是正方形,E,F分别在边BC、CD上,且∠EAF=45°,我们把这种模型称为“半角模型”,在解决“半角模型”问题时,旋转是一种常用的方法.
(1)在图1中,连接EF,为了证明结论“EF=BE+DF“,小亮将△ADF绕点A顺时针旋转90°后解答了这个问题,请按小亮的思路写出证明过程;
(2)如图2,当∠EAF绕点A旋转到图2位置时,试探究EF与DF、BE之间有怎样的数量关系?
(3)如图3,如果四边形ABCD中,AB=AD,∠BAD=∠BCD=90°,∠EAF=45°,且BC=7,DC=13,CF=5,求BE的长.
最新中考几何专项复习专题03 平行模型巩固练习(提优): 这是一份最新中考几何专项复习专题03 平行模型巩固练习(提优),文件包含中考几何专项复习专题03平行模型巩固练习提优教师版含解析docx、中考几何专项复习专题03平行模型巩固练习提优学生版docx等2份试卷配套教学资源,其中试卷共27页, 欢迎下载使用。
最新中考几何专项复习专题02 中点模型巩固练习(提优): 这是一份最新中考几何专项复习专题02 中点模型巩固练习(提优),文件包含中考几何专项复习专题02中点模型巩固练习提优教师版含解析docx、中考几何专项复习专题02中点模型巩固练习提优学生版docx等2份试卷配套教学资源,其中试卷共17页, 欢迎下载使用。
最新中考几何专项复习专题07 倍半角模型巩固练习(提优): 这是一份最新中考几何专项复习专题07 倍半角模型巩固练习(提优),文件包含中考几何专项复习专题07倍半角模型巩固练习提优教师版含解析docx、中考几何专项复习专题07倍半角模型巩固练习提优学生版docx等2份试卷配套教学资源,其中试卷共15页, 欢迎下载使用。