初中数学沪科版八年级下册17.1 一元二次方程练习题
展开
这是一份初中数学沪科版八年级下册17.1 一元二次方程练习题,共5页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
一、单选题(共10小题,满分40分)
1.关于x的方程的两根为-2和3,则m+n的值为
A.1B.-7C.-5D.-6
2.为解决群众看病贵的问题,有关部门决定降低药价,对某种原价为元的药品进行连续两次降价后为元,设平均每次降价的百分率为x,则下面所列方程正确的是( )
A.B.
C.D.
3.某机械厂七月份生产零件50万个,第三季度生产零件196万个,该厂八、九月份平均每月的增长率为,那么满足的方程是( )
A.B.
C.D.
4.若关于x的方程有实数根,则k的取值范围是( )
A.k≤0B.k≥0C.k>0D.无法确定
5.若关于x的一元二次方程有两个实数根,则k的取值范围是( )
A.B.C.D.
6.关于x的一元二次方程x2+2x﹣m=0有两个实数根,则m的取值范围是( )
A.m≥﹣1B.m>﹣1C.m≤﹣1且m≠0D.m≥﹣1且m≠0
7.若关于x的方程(a﹣1)﹣2x+1=0有两个不相等的实数根,则整数a的最大值为( )
A.2B.1C.0D.﹣1
8.某超市一月份的营业额为200万元,一月、二月、三月的营业额共1000万元,如果平均月增长率为,则由题意得方程为( )
A.B.
C.D.
9.一元二次方程有两个不相等的实数根,则满足的条件是
A.>0B.=0C.<0D.≥0
10.已知是方程x2﹣2x+c=0的一个根,则c的值是( )
A.﹣3B.3C.D.2
二、填空题(共8小题,满分32分)
11.将方程x(x﹣2)=x+3化成一般形式后,二次项系数,一次项系数和常数项分别是 .
12.对于任意的实数a,b,定义一种新运算:,若,则的值为 .
13.设,是方程的两个实数根,则的值为 .
14.写出一个以-3和7为根且二次项系数为1的一元二次方程 .
15.设为一元二次方程的一个实数根,则 .
16.已知:关于x的方程①有两个符号不同的实数根,且;关于x的方程②有两个有理数根且两根之积等于2.求整数n的值 .
17.有下列命题:①若,则;②若,则;③一元二次方程,若,则方程必定有实数解;④若,则,其中是假命题的是 .
18.方程组的解是 .
三、解答题(共6小题,每题8分,满分48分)
19.请分别用公式法和配方法两种方法解方程:.
20.用适当的方法解下列方程:
(1);
(2).
21.已知关于x的方程x2﹣x﹣1=0的两根分别为x1x2 , 试求下列代数式的值:
(1)x12+x22
(2).
22.某商店经销一种销售成本为每千克40元的水产品.根据市场分析,若按每千克50元销售,一个月能销售500千克;销售单价每涨1元,月销售量就减少10千克.针对这种水产品的销售情况,请解答以下问题:
(1)当销售单价定为每千克55元时,计算月销售量和月销售利润;
(2)设销售单价为每千克x元,月销售利润为y元,求y与x之间的函数关系式;
(3)商店想在月销售成本不超过10 000元的情况下,使得月销售利润达到5 000元,销售单价应定为多少?
23.已知 关于x的一元二次方程.
求证:无论k取什么实数值,该方程总有两个不相等的实数根;
当的斜边长,且两条直角边b和c恰好是这个方程的两个根时,求的周长.
24.如图所示,在△ABC中,∠B=90°,BC=8cm,AB=6cm.点P从点A开始沿AB边向点B以1cm ∕s的速度移动,点Q从点B开始沿BC边向点C以4 cm ∕ s的速度移动.如果点P、Q分别从点A、B同时出发,经过几秒钟,△PBQ的面积等于10cm2?
参考答案:
1.B
2.A
3.C
4.A
5.D
6.A
7.C
8.B
9.A
10.B
11.1、﹣3、﹣3
12.或/或
13.
14.x2-4x-21=0.
15.
16.5或/或5
17.①②④
18.或
19.,
20.(1),
(2),
21.(1)3;(2)﹣1.
22.(1)450(千克) 6750(元) (2)y=(x-40)[500-(x-50)×10] (3)90元
23.(1)11;(2) .
24.1秒
相关试卷
这是一份初中数学6.2 实数测试题,共4页。
这是一份沪科版七年级下册第6章 实数6.2 实数复习练习题,共6页。
这是一份沪科版17.1 一元二次方程精品当堂达标检测题,共4页。