|试卷下载
终身会员
搜索
    上传资料 赚现金
    北师大版年八年级数学下册《同步考点解读专题训练》专题1.4线段的垂直平分线(专项训练)(原卷版+解析)
    立即下载
    加入资料篮
    北师大版年八年级数学下册《同步考点解读专题训练》专题1.4线段的垂直平分线(专项训练)(原卷版+解析)01
    北师大版年八年级数学下册《同步考点解读专题训练》专题1.4线段的垂直平分线(专项训练)(原卷版+解析)02
    北师大版年八年级数学下册《同步考点解读专题训练》专题1.4线段的垂直平分线(专项训练)(原卷版+解析)03
    还剩12页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中数学3 线段的垂直平分线巩固练习

    展开
    这是一份初中数学3 线段的垂直平分线巩固练习,共15页。

    ①分别以B,C为圆心,以大于BC的长为半径作弧,两弧相交于两点M,N;
    ②作直线MN交AB于点D,连接CD.
    若CD=AC,∠A=50°,则∠ACB的度数为( )
    A.90°B.95°C.100°D.105°
    2.到三角形三个顶点的距离都相等的点是这个三角形的( )
    A.三条高的交点
    B.三条角平分线的交点
    C.三条中线的交点
    D.三条边的垂直平分线的交点
    3.如图,在△ABC中,BC的垂直平分线EF交∠ABC的平分线BD于E,如果∠BAC=60°,∠ACE=24°,那么∠BCE的大小是( )
    A.24°B.30°C.32°D.36°
    4.如图,在△ABC中,DE是AC的垂直平分线,且分别交BC,AC于点D和E,∠B=60°,∠C=25°,则∠BAD为( )
    A.50°B.70°C.75°D.80°
    5.如图,在△ABC中,AC的垂直平分线分别交AC、BC于E,D两点,EC=4,△ABC的周长为23,则△ABD的周长为( )
    A.13B.15C.17D.19
    6.如图,△ABC中,∠C=90°,ED垂直平分AB,若AC=12,EC=5,且△ACE的周长为30,则BE的长为( )
    A.5B.10C.12D.13
    7.如图所示,点P为∠AOB内一点,分别作出P点关于OA、OB的对称点P1,P2,连接P1P2交OA于M,交OB于N,P1P2=15,则△PMN的周长为 .
    8.(2021秋•宣化区期中)如图,在△ABC中,∠C=90°,DE是AB的垂直平分线,AD恰好平分∠BAC.若DE=1,则BC的长是 .
    9.如图,在△ABC中,AB=AC,AB的垂直平分线MN交AC于D点.若BD平分∠ABC,则∠A= °.
    10.如图,△ABC中,∠A=90°,∠B=60°,BC的垂直平分线交BC于点D,交AC于点E.
    (1)求证:AE=DE;
    (2)若AE=6,求CE的长.
    11.如图,△ABC中BD、CD平分∠ABC、∠ACB,过D作直线平行于BC,交AB、AC于E、F,求证:EF=BE+CF.
    12.如图,在△ABC中,DM、EN分别垂直平分AC和BC,交AB于M、N两点,DM与EN相交于点F.
    (1)若△CMN的周长为15cm,求AB的长;
    (2)若∠MFN=70°,求∠MCN的度数.
    13.如图,已知:E是∠AOB的平分线上一点,EC⊥OB,ED⊥OA,C、D是垂足,连接CD,且交OE于点F.
    (1)求证:OE是CD的垂直平分线.
    (2)若∠AOB=60°,请你探究OE,EF之间有什么数量关系?并证明你的结论.
    14.作图题:(不写作法,但必须保留作图痕迹)
    如图:某地有两所大学和两条相交叉的公路,(点M,N表示大学,AO,BO表示公路).现计划修建一座物资仓库,希望仓库到两所大学的距离相等,到两条公路的距离也相等.你能确定仓库P应该建在什么位置吗?在所给的图形中画出你的设计方案.
    专题1.4 线段的垂直平分线(专项训练)
    1.如图,在已知的△ABC中,按以下步骤作图:
    ①分别以B,C为圆心,以大于BC的长为半径作弧,两弧相交于两点M,N;
    ②作直线MN交AB于点D,连接CD.
    若CD=AC,∠A=50°,则∠ACB的度数为( )
    A.90°B.95°C.100°D.105°
    【答案】D
    【解答】解:∵CD=AC,∠A=50°,
    ∴∠ADC=∠A=50°,
    根据题意得:MN是BC的垂直平分线,
    ∴CD=BD,
    ∴∠BCD=∠B,
    ∴∠B=∠ADC=25°,
    ∴∠ACB=180°﹣∠A﹣∠B=105°.
    故选:D.
    2.到三角形三个顶点的距离都相等的点是这个三角形的( )
    A.三条高的交点
    B.三条角平分线的交点
    C.三条中线的交点
    D.三条边的垂直平分线的交点
    【答案】D
    【解答】解:到三角形三个顶点的距离都相等的点是这个三角形的三条边的垂直平分线的交点,
    故选:D.
    3.如图,在△ABC中,BC的垂直平分线EF交∠ABC的平分线BD于E,如果∠BAC=60°,∠ACE=24°,那么∠BCE的大小是( )
    A.24°B.30°C.32°D.36°
    【答案】C
    【解答】解:∵EF是BC的垂直平分线,
    ∴BE=CE,
    ∴∠EBC=∠ECB,
    ∵BD是∠ABC的平分线,
    ∴∠ABD=∠CBD,
    ∴∠ABD=∠DBC=∠ECB,
    ∵∠BAC=60°,∠ACE=24°,
    ∴∠ABD=∠DBC=∠ECB=(180°﹣60°﹣24°)=32°.
    故选:C.
    4.如图,在△ABC中,DE是AC的垂直平分线,且分别交BC,AC于点D和E,∠B=60°,∠C=25°,则∠BAD为( )
    A.50°B.70°C.75°D.80°
    【答案】B
    【解答】解:∵DE是AC的垂直平分线,
    ∴DA=DC,
    ∴∠DAC=∠C=25°,
    ∵∠B=60°,∠C=25°,
    ∴∠BAC=95°,
    ∴∠BAD=∠BAC﹣∠DAC=70°,
    故选:B.
    5.如图,在△ABC中,AC的垂直平分线分别交AC、BC于E,D两点,EC=4,△ABC的周长为23,则△ABD的周长为( )
    A.13B.15C.17D.19
    【答案】B
    【解答】解:∵AC的垂直平分线分别交AC、BC于E,D两点,
    ∴AD=DC,AE=CE=4,
    即AC=8,
    ∵△ABC的周长为23,
    ∴AB+BC+AC=23,
    ∴AB+BC=23﹣8=15,
    ∴△ABD的周长为AB+BD+AD=AB+BD+CD=AB+BC=15,
    故选:B.
    6.如图,△ABC中,∠C=90°,ED垂直平分AB,若AC=12,EC=5,且△ACE的周长为30,则BE的长为( )
    A.5B.10C.12D.13
    【答案】D
    【解答】解:∵ED垂直平分AB,
    ∴BE=AE,
    ∵AC=12,EC=5,且△ACE的周长为30,
    ∴12+5+AE=30,
    ∴AE=13,
    ∴BE=AE=13,
    故选:D.
    7.如图所示,点P为∠AOB内一点,分别作出P点关于OA、OB的对称点P1,P2,连接P1P2交OA于M,交OB于N,P1P2=15,则△PMN的周长为 .
    【答案】15
    【解答】解:∵P点关于OA的对称是点P1,P点关于OB的对称点P2,
    ∴PM=P1M,PN=P2N.
    ∴△PMN的周长为PM+PN+MN=MN+P1M+P2N=P1P2=15.
    故答案为:15
    8.(2021秋•宣化区期中)如图,在△ABC中,∠C=90°,DE是AB的垂直平分线,AD恰好平分∠BAC.若DE=1,则BC的长是 .
    【答案】3
    【解答】解:∵AD平分∠BAC,且DE⊥AB,∠C=90°,
    ∴CD=DE=1,
    ∵DE是AB的垂直平分线,
    ∴AD=BD,
    ∴∠B=∠DAB,
    ∵∠DAB=∠CAD,
    ∴∠CAD=∠DAB=∠B,
    ∵∠C=90°,
    ∴∠CAD+∠DAB+∠B=90°,
    ∴∠B=30°,
    ∴BD=2DE=2,
    ∴BC=BD+CD=1+2=3,
    故答案为:3.
    9.如图,在△ABC中,AB=AC,AB的垂直平分线MN交AC于D点.若BD平分∠ABC,则∠A= °.
    【答案】36
    【解答】解:∵AB=AC,
    ∴∠C=∠ABC,
    ∵AB的垂直平分线MN交AC于D点.
    ∴∠A=∠ABD,
    ∵BD平分∠ABC,
    ∴∠ABD=∠DBC,
    ∴∠C=2∠A=∠ABC,
    设∠A为x,
    可得:x+x+x+2x=180°,
    解得:x=36°,
    故答案为:36
    10.如图,△ABC中,∠A=90°,∠B=60°,BC的垂直平分线交BC于点D,交AC于点E.
    (1)求证:AE=DE;
    (2)若AE=6,求CE的长.
    【解答】(1)证明:连接BE,
    ∵∠A=90°,∠ABC=60°,
    ∴∠C=30°,
    ∵BC的垂直平分线交BC于点D,交AC于点E.
    ∴BE=CE,
    ∴∠C=∠EBC=30°,
    ∴∠ABE=30°,
    ∴AE=BE,DE=BE,
    ∴AE=DE;
    (2)解:∵∠A=90°,AE=6,∠ABE=30°,
    ∴BE=2AE=12,
    ∴CE=BE=12.
    11.如图,△ABC中BD、CD平分∠ABC、∠ACB,过D作直线平行于BC,交AB、AC于E、F,求证:EF=BE+CF.
    【解答】解:∵△ABC中BD、CD平分∠ABC、∠ACB,
    ∴∠1=∠2,∠5=∠6,
    ∵EF∥BC,∴∠2=∠3,∠4=∠6,
    ∴∠1=∠3,∠4=∠5,
    根据在同一三角形中等角对等边的原则可知,BE=ED,DF=FC,故EF=ED+DF=BE+CF.
    12.如图,在△ABC中,DM、EN分别垂直平分AC和BC,交AB于M、N两点,DM与EN相交于点F.
    (1)若△CMN的周长为15cm,求AB的长;
    (2)若∠MFN=70°,求∠MCN的度数.
    【解答】解:(1)∵DM、EN分别垂直平分AC和BC,
    ∴AM=CM,BN=CN,
    ∴△CMN的周长=CM+MN+CN=AM+MN+BN=AB,
    ∵△CMN的周长为15cm,
    ∴AB=15cm;
    (2)∵∠MFN=70°,
    ∴∠MNF+∠NMF=180°﹣70°=110°,
    ∵∠AMD=∠NMF,∠BNE=∠MNF,
    ∴∠AMD+∠BNE=∠MNF+∠NMF=110°,
    ∴∠A+∠B=90°﹣∠AMD+90°﹣∠BNE=180°﹣110°=70°,
    ∵AM=CM,BN=CN,
    ∴∠A=∠ACM,∠B=∠BCN,
    ∴∠MCN=180°﹣2(∠A+∠B)=180°﹣2×70°=40°.
    13.如图,已知:E是∠AOB的平分线上一点,EC⊥OB,ED⊥OA,C、D是垂足,连接CD,且交OE于点F.
    (1)求证:OE是CD的垂直平分线.
    (2)若∠AOB=60°,请你探究OE,EF之间有什么数量关系?并证明你的结论.
    【解答】解:(1)∵E是∠AOB的平分线上一点,EC⊥OB,ED⊥OA,
    ∴DE=CE,OE=OE,
    ∴Rt△ODE≌Rt△OCE,
    ∴OD=OC,
    ∴△DOC是等腰三角形,
    ∵OE是∠AOB的平分线,
    ∴OE是CD的垂直平分线;
    (2)∵OE是∠AOB的平分线,∠AOB=60°,
    ∴∠AOE=∠BOE=30°,
    ∵EC⊥OB,ED⊥OA,
    ∴OE=2DE,∠ODF=∠OED=60°,
    ∴∠EDF=30°,
    ∴DE=2EF,
    ∴OE=4EF.
    14.作图题:(不写作法,但必须保留作图痕迹)
    如图:某地有两所大学和两条相交叉的公路,(点M,N表示大学,AO,BO表示公路).现计划修建一座物资仓库,希望仓库到两所大学的距离相等,到两条公路的距离也相等.你能确定仓库P应该建在什么位置吗?在所给的图形中画出你的设计方案.
    【解答】解:如图所示:
    (1)连接MN,分别以M、N为圆心,以大于MN为半径画圆,两圆相交于DE,连接DE,则DE即为线段MN的垂直平分线;
    (2)以O为圆心,以任意长为半径画圆,分别交OA、OB于G、H,再分别以G、H为圆心,以大于GH为半径画圆,两圆相交于F,连接OF,则OF即为∠AOB的平分线(或∠AOB的外角平分线);
    (3)DE与OF相交于点P,则点P即为所求.
    相关试卷

    北师大版八年级下册1 因式分解同步测试题: 这是一份北师大版八年级下册<a href="/sx/tb_c15841_t7/?tag_id=28" target="_blank">1 因式分解同步测试题</a>,共13页。

    北师大版八年级下册第三章 图形的平移与旋转3 中心对称精练: 这是一份北师大版八年级下册<a href="/sx/tb_c94884_t7/?tag_id=28" target="_blank">第三章 图形的平移与旋转3 中心对称精练</a>,共16页。

    初中数学北师大版八年级下册2 图形的旋转练习题: 这是一份初中数学北师大版八年级下册<a href="/sx/tb_c94883_t7/?tag_id=28" target="_blank">2 图形的旋转练习题</a>,共21页。

    • 精品推荐
    • 所属专辑
    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        北师大版年八年级数学下册《同步考点解读专题训练》专题1.4线段的垂直平分线(专项训练)(原卷版+解析)
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map