【高频真题解析】河北省中考数学考前摸底测评 卷(Ⅱ)(含答案及解析)
展开考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、如图,已知与都是以A为直角顶点的等腰直角三角形,绕顶点A旋转,连接.以下三个结论:①;②;③;其中结论正确的个数是( )
A.1B.2C.3D.0
2、下列图形是全等图形的是( )
A.B.C.D.
3、有理数,在数轴上对应点如图所示,则下面式子中正确的是( )
A.B.C.D.
4、生活中常见的探照灯、汽车大灯等灯具都与抛物线有关.如图,从光源P点照射到抛物线上的光线等反射以后沿着与直线平行的方向射出,若,,则的度数为( )°
A.B.C.D.
5、如图,直线AB与CD相交于点O,若,则等于( )
A.40°B.60°C.70°D.80°
6、如图,在中,,D是BC的中点,垂足为D,交AB于点E,连接CE.若,,则BE的长为( )
A.3B.C.4D.
7、若和是同类项,且它们的和为0,则mn的值是( )
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
A.-4B.-2C.2D.4
8、代数式的意义是( )
A.a与b的平方和除c的商B.a与b的平方和除以c的商
C.a与b的和的平方除c的商D.a与b的和的平方除以c的商
9、一副三角板按如图所示的方式摆放,则∠1补角的度数为( )
A.B.C.D.
10、如图,①,②,③,④可以判定的条件有( ).
A.①②④B.①②③C.②③④D.①②③④
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、若关于的不等式的解集为,则的取值范围为__.
2、、所表示的有理数如图所示,则________.
3、如图,在中,中线相交于点,如果的面积是4,那么四边形的面积是_________
4、比较大小[(﹣2)3]2___(﹣22)3.(填“>”,“<”或“=”)
5、∠AOB的大小可由量角器测得(如图所示),则∠AOB的补角的大小为_____度.
三、解答题(5小题,每小题10分,共计50分)
1、如图,已知直线,,平分.
(1)求证:;
(2)若比的2倍少3度,求的度数.
2、如图1,在平面直角坐标系中,已知、、、,以为边在下方作正方形.
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
(1)求直线的解析式;
(2)点为正方形边上一点,若,求的坐标;
(3)点为正方形边上一点,为轴上一点,若点绕点按顺时针方向旋转后落在线段上,请直接写出的取值范围.
3、如图,在中,,于点,为边上一点,连接与交于点.为外一点,满足,,连接.
(1)求证:;
(2)求证:.
4、已知:如图,在△ABC中,AB=AC,以AC为直径的⊙O与BC交于点D,DE⊥AB,垂足为 E,ED的延长线与AC 的延长线交于点F,
(1)求证:DE是⊙O的切线;
(2)若⊙O的半径为4,∠F =30°,求DE的长.
5、某校准备从八年级1班、2班的团员中选取两名同学作为运动会的志愿者,已知1班有4名团员(其中男生2人,女生2人).2班有3名团员(其中男生1人,女生2人).
(1)如果从这两个班的全体团员中随机选取一名同学作为志愿者的组长,则这名同学是男生的概率为______;
(2)如果分别从1班、2班的团员中随机各选取一人,请用画树状图或列表的方法求这两名同学恰好是一名男生、一名女生的概率.
-参考答案-
一、单选题
1、B
【分析】
证明△BAD≌△CAE,由此判断①正确;由全等的性质得到∠ABD=∠ACE,求出∠ACE+∠DBC=45°,依据,推出,故判断②错误;设BD交CE于M,根据∠ACE+∠DBC=45°,∠ACB=45°,求出∠BMC=90°,即可判断③正确.
【详解】
解:∵与都是以A为直角顶点的等腰直角三角形,
∴AB=AC,AD=AE,∠BAC=∠DAE=90°,
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
∴∠BAD=∠CAE,
∴△BAD≌△CAE,
∴,故①正确;
∵△BAD≌△CAE,
∴∠ABD=∠ACE,
∵∠ABD+∠DBC=45°,
∴∠ACE+∠DBC=45°,
∵,
∴,
∴不成立,故②错误;
设BD交CE于M,
∵∠ACE+∠DBC=45°,∠ACB=45°,
∴∠BMC=90°,
∴,故③正确,
故选:B.
【点睛】
此题考查了三角形全等的判定及性质,等腰直角三角形的性质,熟记三角形全等的判定定理及性质定理是解题的关键.
2、D
【详解】
解:A、不是全等图形,故本选项不符合题意;
B、不是全等图形,故本选项不符合题意;
C、不是全等图形,故本选项不符合题意;
D、全等图形,故本选项符合题意;
故选:D
【点睛】
本题主要考查了全等图形的定义,熟练掌握大小形状完全相同的两个图形是全等图形是解题的关键.
3、C
【分析】
先根据数轴可得,再根据有理数的加减法与乘法法则逐项判断即可得.
【详解】
解:由数轴得:.
A、,此项错误;
B、由得:,所以,此项错误;
C、,此项正确;
D、,此项错误;
故选:C.
【点睛】
本题考查了数轴、绝对值、有理数的加减法与乘法,熟练掌握数轴的性质是解题关键.
4、C
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
【分析】
根据平行线的性质可得,进而根据即可求解
【详解】
解:
故选C
【点睛】
本题考查了平行线的性质,掌握平行线的性质是解题的关键.
5、A
【分析】
根据对顶角的性质,可得∠1的度数.
【详解】
解:由对顶角相等,得
∠1=∠2,又∠1+∠2=80°,
∴∠1=40°.
故选:A.
【点睛】
本题考查的是对顶角,掌握对顶角相等这一性质是解决此题关键.
6、D
【分析】
勾股定理求出CE长,再根据垂直平分线的性质得出BE=CE即可.
【详解】
解:∵,,,
∴,
∵,D是BC的中点,垂足为D,
∴BE=CE,
故选:D.
【点睛】
本题考查了勾股定理,垂直平分线的性质,解题关键是熟练运用勾股定理求出CE长.
7、B
【分析】
根据同类项的定义得到2+m=3,n-1=-3, 求出m、n的值代入计算即可.
【详解】
解:∵和是同类项,且它们的和为0,
∴2+m=3,n-1=-3,
解得m=1,n=-2,
∴mn=-2,
故选:B.
【点睛】
此题考查了同类项的定义:含有相同的字母,且相同字母的指数分别相等,熟记定义是解题的关键.
8、D
【分析】
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
(a+b)2表示a与b的和的平方,然后再表示除以c的商.
【详解】
解:代数式的意义是a与b的和的平方除以c的商,
故选:D.
【点睛】
此题主要考查了代数式的意义,关键是根据计算顺序描述.
9、D
【分析】
根据题意得出∠1=15°,再求∠1补角即可.
【详解】
由图形可得
∴∠1补角的度数为
故选:D.
【点睛】
本题考查利用三角板求度数和补角的定义,熟记各个三角板的角的度数是解题的关键.
10、A
【分析】
根据平行线的判定定理逐个排查即可.
【详解】
解:①由于∠1和∠3是同位角,则①可判定;
②由于∠2和∠3是内错角,则②可判定;
③①由于∠1和∠4既不是同位角、也不是内错角,则③不能判定;
④①由于∠2和∠5是同旁内角,则④可判定;
即①②④可判定.
故选A.
【点睛】
本题主要考查了平行线的判定定理,平行线的判定定理主要有:两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行;如果内错角相等,那么这两条直线平行;如果同旁内角互补,那么这两条直线平行.
二、填空题
1、
【解析】
【分析】
根据不等式的性质3,不等式的两边同乘或除以同一个负数,不等号的方向改变,可得答案.
【详解】
解:不等式的解集为,
,
.
故答案为:.
【点睛】
本题考查了一元一次不等式的性质,解一元一次不等式,掌握不等式性质,不等式的两边同时乘以或除以一个负数,不等号的方向发生改变是解题关键.
2、
【解析】
【分析】
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
根据数轴确定,得出,然后化去绝对值符号,去括号合并同类项即可.
【详解】
解:根据数轴得,
∴,
∴.
故答案为:.
【点睛】
本题考查数轴上点表示数,化简绝对值,整式加减运算,掌握数轴上点表示数,化简绝对值,整式加减运算,关键是利用数轴得出.
3、8
【解析】
【分析】
如图所示,连接DE,先推出DE是△ABC的中位线,得到,DE∥AB,即可证明△ABO∽△DEO,△CDE∽△CBA,得到,从而推出,即可得到,再由,即可得到,由,得到,则.
【详解】
解:如图所示,连接DE,
∵AD,BE分别是BC,AC边上的中线,
∴D、E分别是BC、AC的中点,
∴DE是△ABC的中位线,
∴,DE∥AB,
∴△ABO∽△DEO,△CDE∽△CBA,
∴,
∴,
∴,
∴,
∴
∵,
∴,
∵,
∴,
∴,
故答案为:8.
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
【点睛】
本题主要考查了相似三角形的性质与判定,三角形中位线定理,熟知相似三角形的性质与判定条件是解题的关键.
4、>
【解析】
【分析】
利用幂的乘方和积的乘方先计算[(-2)3]2与(-22)3,再比较大小得结论.
【详解】
解:∵[(-2)3]2=(-2)3×2=(-2)6=26,
(-22)3=-26,
又∵26>-26,
∴[(-2)3]2>(-22)3.
故答案为:>.
【点睛】
本题考查了幂的乘方和积的乘方,掌握幂的乘方和积的乘方法则是解决本题的关键.
5、140
【解析】
【分析】
先根据图形得出∠AOB=40°,再根据和为180度的两个角互为补角即可求解.
【详解】
解:由题意,可得∠AOB=40°,
则∠AOB的补角的大小为:180°−∠AOB=140°.
故答案为:140.
【点睛】
本题考查补角的定义:如果两个角的和等于180°(平角),就说这两个角互为补角.即其中一个角是另一个角的补角.熟记定义是解题的关键.
三、解答题
1、
(1)见解析
(2)
【分析】
(1)根据平行线的性质,角平分线的定义,直角三角形的两锐角互余可得,,,进而即可得,即;
(2)根据题意,由(1)的角度之间关系可得,结合已知条件建立二元一次方程组,解方程组即可求解.
(1)
如图,
平分
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
,
即
(2)
如图,
由比的2倍少3度,
即①
,又
即②
解得
【点睛】
本题考查了平行线的性质,直角三角形的两锐角互余,二元一次方程组,数形结合是解题的关键.
2、
(1)
(2),,,
(3)或
【分析】
(1)待定系数法求直线解析式,代入坐标、得出,解方程组即可;
(1)根据OA=2,OB=4,设点P在y轴上,点P坐标为(0,m),根据S△ABP=8,求出点P(0,4)或(0,-12),过P(0,4)作AB的平行线交正方形CDEF边两点N1和N2,利用平行线性质求出与AB平行过点P的解析式,与CD,FE的交点,过点P(0,-12)作AB的平行线交正方形CDEF边两点N3和N4,利用平行线性质求出与AB平行过点P的解析式,求出与DE,EF的交点即可;
(3):根据点N在正方形边上,分四种情况①在上,过N′作GN′⊥y轴于G,正方形边CD与y轴交于H,在y轴正半轴上,先证△HNM1≌△GM1N′(AAS),求出点N′(6-m,m-6)在线段AB上,代入解析式直线的解析式得出,当点N旋转与点B重合,可得M2N′=NM2-OB=6-4=2②在上,当点N绕点M3旋转与点A重合,先证△HNM3≌△GM3N′(AAS),DH=M3G=6-2=4,HM3=GN′=2,③在上,当点N与点F重合绕点M4旋转到AB上N′先证△M5NM3≌△GM3N′(AAS),得出点N′(-6-m,m+6),点N′在线段AB上,直线的解析式,得出方程,,当点N绕点M5旋转点N′与点A重合,证明△FM3N≌△OM5N′(AAS),可得FM5=M5O=6,FN=ON′=2,④在上,点N绕点M6旋转点N′与点B重合,MN=MB=2即可.
(1)
解:设,代入坐标、得:
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
,
,
∴直线的解析式;
(2)
解:∵、、OA=2,OB=4,设点P在y轴上,点P坐标为(0,m)
∵S△ABP=8,
∴,
∴,
解得,
∴点P(0,4)或(0,-12),
过P(0,4)作AB的平行线交正方形CDEF边两点N1和N2,
设解析式为,m=2,n=4,
∴,
当y=6时,,
解得,
当y=-6时,,
解得,
,,
过点P(0,-12)作AB的平行线交正方形CDEF边两点N3和N4,
设解析式为,
,
当y=-6, ,
解得:,
当x=6, ,
解得,
,
∴,的坐标为或或或,
(3)
解:①在上,过N′作GN′⊥y轴于G,正方形边CD与y轴交于H,在y轴正半轴上,
∵M1N=M1N′,∠NM1N′=90°,
∴∠HNM1+∠HM1N=90°,∠HM1N+∠GM1N′=90°,
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
∴∠HNM1=∠GM1N′,
在△HNM1和△GM1N′中,
,
∴△HNM1≌△GM1N′(AAS),
∴DH=M1G=6,HM1=GN′=6-m,
∵点N′(6-m,m-6)在线段AB上,直线的解析式;
即,
解得,
当点N旋转与点B重合,
∴M2N′=NM2-OB=6-4=2,
,,
,
②在上,
当点N绕点M3旋转与点A重合,
∵M3N=M3N′,∠NM3N′=90°,
∴∠HNM3+∠HM3N=90°,∠HM3N+∠GM3N′=90°,
∴∠HNM3=∠GM3N′,
在△HNM3和△GM3N′中,
,
∴△HNM3≌△GM3N′(AAS),
∴DH=M3G=6-2=4,HM3=GN′=2,
,,
③在上,
当点N与点F重合绕点M4旋转到AB上N′,
∵M4N=M4N′,∠NM4N′=90°,
∴∠M5NM4+∠M5M4N=90°,∠M5M4N+∠GM4N′=90°,
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
∴∠M5NM4=∠GM4N′,
在△M5NM4和△GM4N′中,
,
∴△M5NM3≌△GM3N′(AAS),
∴FM5=M4G=6,M5M4=GN′=-6-m,
∴点N′(-6-m,m+6),
点N′在线段AB上,直线的解析式;
,
解得,
当点N绕点M5旋转点N′与点A重合,
∵M5N=M5N′,∠NM5N′=90°,
∴∠NM5O+∠FM5N=90°,∠OM5N+∠OM5N′=90°,
∴∠FM5N=∠OM5N′,
在△FM5N和△OM5N′中,
,
∴△FM3N≌△OM5N′(AAS),
∴FM5=M5O=6,FN=ON′=2,
,,,
④在上,
点N绕点M6旋转点N′与点B重合,MN=MB=2,
,,,
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
综上:或
【点睛】
本题考查图形与坐标,待定系数法求一次函数解析式,正方形的性质,平行线性质,图形旋转,三角形全等判定与性质,一元一次方程,不等式,本题难度,图形复杂,应用知识多,要求有很强的解题能力.
3、
(1)见解析
(2)见解析
【分析】
(1)如图,先证明,再根据全等三角形的判定证明结论即可;
(2)根据全等三角形的性质和等腰三角形的三线合一证明,再根据全等三角形的判定与性质证明即可.
(1)
证明:(1)证明:∵,
∴,
即,
在和中,
∵,
∴;
(2)
证明:∵,
∴,,
∵,于点,
∴.
∵,
∴,
在和中,
∵,
∴,
∴,
∴.
【点睛】
本题考查全等三角形的判定与性质、等腰三角形的性质,熟练掌握全等三角形的判定与性质是解答的关键.
4、
(1)见解析
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
(2)
【分析】
(1)连接AD、OD,根据等腰三角形的性质和圆周角定理可证得∠EAD=∠ODA,根据平行线在判定与性质可证得OD⊥DE,然后根据切线的判定即可证得结论;
(2)根据含30°角的直角三角形的性质求得OF、DF,再根据平行线分线段成比例求解即可.
(1)
证明:连接AD、OD,
∵OA=OD,
∴∠OAD=∠ODA,
∵AC是⊙O的直径,
∴∠ADC=90°即AD⊥BC,又AB=AC,
∴∠BAD=∠OAD,
∴∠EAD=∠ODA,
∴OD∥AB,
∵DE⊥AB,
∴OD⊥DE,又OD是半径,
∴DE是⊙O的切线;
(2)
解:在Rt△ODF中,OD=4,∠F=30°,
∴OF=2OD=8,DF= OD= ,
∵OD∥AB,
∴即,
∴.
【点睛】
本题考查等腰三角形的性质、圆周角定理、平行线的判定与性质、切线的判定、含30°角的直角三角形性质、平行线分线段成比例,综合性强,难度适中,熟练掌握相关知识的联系与运用是解答的关键.
5、
(1)
(2)两名同学恰好是一名男生、一名女生的概率为:
【分析】
(1)两个班一共有7名学生,其中男生有3人,随机选一名学生选出为男生的概率为:男生人数除以总人数;
(2)先根据题意画出树状图,第一层列出从1班选出的所有可能情况,第二层列出从二班选出的所有可能情况,根据树状图可知一共有12种等可能事件,其中选出的恰好是一名男生和一名女生的情况有6种,所以两名同学恰好是一名男生、一名女生的概率为.
(1)
解:恰好选出的同学是男生的概,
故答案为:.
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
(2)
画树状图如图:
,
共有12个等可能事件,其中恰好两名同学恰好是一名男生、一名女生的概率为:,
故答案为:.
【点睛】
本题考查简单的概率计算,以及列表法或列树状图法求概率,能够将根据题意列表,或列树状图,并根据列表或树状图求出概率.
【历年真题】2022年河北省新乐市中考数学考前摸底测评 卷(Ⅱ)(含答案解析): 这是一份【历年真题】2022年河北省新乐市中考数学考前摸底测评 卷(Ⅱ)(含答案解析),共20页。试卷主要包含了使分式有意义的x的取值范围是,下列等式成立的是,有下列四种说法,如果,那么的取值范围是等内容,欢迎下载使用。
【高频真题解析】2022年河北省新乐市中考数学考前摸底测评 卷(Ⅱ)(含答案解析): 这是一份【高频真题解析】2022年河北省新乐市中考数学考前摸底测评 卷(Ⅱ)(含答案解析),共23页。试卷主要包含了下列说法正确的是等内容,欢迎下载使用。
【高频真题解析】2022年河北省邢台市中考数学考前摸底测评 卷(Ⅱ)(精选): 这是一份【高频真题解析】2022年河北省邢台市中考数学考前摸底测评 卷(Ⅱ)(精选),共25页。试卷主要包含了某玩具店用6000元购进甲,下列运算中,正确的是,如图是三阶幻方的一部分,其每行等内容,欢迎下载使用。