模拟真题:2022年河北省石家庄市中考数学考前摸底测评 卷(Ⅱ)(含答案解析)
展开2022年河北省石家庄市中考数学考前摸底测评 卷(Ⅱ)
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、如图,在矩形ABCD中,AB=2,BC=4,对角线AC,BD相交于点O,OE⊥AC交BC于点E,EF⊥BD于点F,则OE+EF的值为( )
A. B.2 C. D.2
2、如图,点A的坐标为,点B是x轴正半轴上的动点,以AB为腰作等腰直角,使,设点B的横坐标为x,设点C的纵坐标为y,能表示y与x的函数关系的图象大致是( )
A. B.
C. D.
3、下列各点在反比例的图象上的是( )
A.(2,-3) B.(-2,3) C.(3,2) D.(3,-2)
4、如图,,AC=DF,下列条件中不能判断△ABC≌△DEF的是( )
A.EF=BC B. C.∠B=∠E D.AB=DE
5、下列关于x的方程中一定有实数根的是( )
A.x2=﹣x﹣1 B.2x2﹣6x+9=0 C.x2+mx+2=0 D.x2﹣mx﹣2=0
6、已知,,在二次函数的图象上,,,则的大小关系是( )
A. B. C. D.
7、某公园改造一片长方形草地,长增加30%,宽减少20%,则这块长方形草地的面积( )
A.增加10% B.增加4% C.减少4% D.大小不变
8、一种药品经过两次降价,药价从每盒60元下调至48.6元,设平均每次降价的百分率为x,根据题意所列方程正确的是( )
A. B. C. D.
9、用配方法解一元二次方程x2+3=4x,下列配方正确的是( )
A.(x+2)2=2 B.(x-2)2=7 C.(x+2)2=1 D.(x-2)2=1
10、一组样本数据为1、2、3、3、6,下列说法错误的是( )
A.平均数是3 B.中位数是3 C.方差是3 D.众数是3
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如图,在△ABC中,点D、E分别在边AB、AC上,DE∥BC,将△ADE沿直线DE翻折后与△FDE重合,DF、EF分别与边BC交于点M、N,如果DE=8,,那么MN的长是_____.
2、如图,在Rt△ABC中,∠BAC=90°,AB=6,D是边BC上一点,连接AD.将△ABD沿直线AD翻折后,点B恰好落在边AC上B'点,若AB':B'C=3:2,则点D到AC的距离是 _____.
3、已知某数的相反数是﹣2,那么该数的倒数是 __________________.
4、背面完全相同的四张卡片,正面分别写着数字-4,-1,2,3,背面朝上并洗匀,从中随机抽取一张,将卡片上的数字记为,再从余下的卡片中随机抽取一张,将卡片上的数字记为,则点在第四象限的概率为__________.
5、如图,在中,是边的垂直平分线,,的周长为23,则的周长为_________.
三、解答题(5小题,每小题10分,共计50分)
1、李老师参加“新星杯”教学大赛,在课堂教学的练习环节中,设计了一个学生选题活动,即从4道题目中任选两道作答.李老师用课件在同一页面展示了A,B,C,D四张美丽的图片,其中每张图片链接一道练习题目,李老师找甲、乙两名同学随机各选取一张图片,并要求全班同学作答选取图片所链接的题目.
(1)甲同学选取A图片链接题目的概率是 ;
(2)求全班同学作答图片A和B所链接题目的概率.(请用列表法或画树状图法求解)
2、如图,C,D是以AB为直径的半圆周的三等分点,CD=8cm.
(1)求∠ACD的度数;
(2)求阴影部分的面积.
3、某公司销售部门2021年上半年完成的销售额如下表.
月份 | 一月份 | 二月份 | 三月份 | 四月份 | 五月份 | 六月份 |
销售额(万元) | -1.6 | -2.5 | +2.4 | +1.2 | -0.7 | +1.8 |
(正号表示销售额比上个月上升,负号表示销售额比上个月下降)
(1)上半年哪个月的销售额最高?每个月销售额最低?销售额最高的比销售额最低的高多少?
(2)这家公司2021年6月的销售额与去年年底相比是上升了还是下降了?上升或下降了多少?
4、计算:.
5、解方程:.
-参考答案-
一、单选题
1、A
【分析】
依据矩形的性质即可得到的面积为2,再根据,即可得到的值.
【详解】
解:,,
矩形的面积为8,,
,
对角线,交于点,
的面积为2,
,,
,即,
,
,
,
故选:A.
【点睛】
本题主要考查了矩形的性质,解题的关键是掌握矩形的四个角都是直角,矩形的对角线相等且互相平分.
2、A
【分析】
根据题意作出合适的辅助线,可以先证明△ADC和△AOB的关系,即可建立y与x的函数关系,从而可以得到哪个选项是正确的.
【详解】
解:作AD∥x轴,作CD⊥AD于点D,如图所示,
由已知可得,OB=x,OA=1,∠AOB=90°,∠BAC=90°,AB=AC,点C的纵坐标是y,
∵AD∥x轴,
∴∠DAO+∠AOB=180°,
∴∠DAO=90°,
∴∠OAB+∠BAD=∠BAD+∠DAC=90°,
∴∠OAB=∠DAC,
在△OAB和△DAC中
,
∴△OAB≌△DAC(AAS),
∴OB=CD,
∴CD=x,
∵点C到x轴的距离为y,点D到x轴的距离等于点A到x的距离1,
∴y=x+1(x>0).
故选:A.
【点睛】
本题考查动点问题的函数图象,全等三角形的性质和判定,等腰三角形的定义.解题的关键是明确题意,建立相应的函数关系式,根据函数关系式判断出正确的函数图象.
3、C
【分析】
根据反比例函数图象上点的坐标特征对各选项进行判断.
【详解】
解:∵2×(−3)=−6,−2×3=−6,3×(−2)=−6,
而3×2=6,
∴点(2,−3),(−2,3)(3,−2),不在反比例函数图象上,点(3,2)在反比例函数图象上.
故选:C.
【点睛】
本题考查了反比例函数图象上点的坐标特征:反比例函数(k为常数,k≠0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.
4、A
【分析】
利用先证明结合已有的条件 再对每个选项添加的条件逐一分析,即可得到答案.
【详解】
解:如图,
所以添加EF=BC,不能判定△ABC≌△DEF,故A符合题意;
延长 交于 添加,
△ABC≌△DEF,故B,C不符合题意;
添加AB=DE,能判定△ABC≌△DEF,故D不符合题意;
故选A
【点睛】
本题考查的是添加一个条件判定两个三角形全等,熟练的掌握“利用判定三角形全等”是解本题的关键.
5、D
【分析】
分别求出方程的判别式,根据判别式的三种情况分析解答.
【详解】
解:A、∵x2=﹣x﹣1,
∴,
∵,
∴该方程没有实数根;
B、2x2﹣6x+9=0,
∵,
∴该方程没有实数根;
C、x2+mx+2=0,
∵,无法判断与0的大小关系,
∴无法判断方程根的情况;
D、x2﹣mx﹣2=0,
∵,
∴方程一定有实数根,
故选:D.
【点睛】
此题考查了一元二次方程根的情况,正确掌握判别式的计算方法及根的三种情况是解题的关键.
6、B
【分析】
由抛物线开口向下且对称轴为直线x=-3知离对称轴水平距离越远,函数值越大,据此求解可得.
【详解】
解:∵二次函数中a=-1<0,
∴抛物线开口向下,有最大值.
∵x=-=-3,
∴离对称轴水平距离越远,函数值越小,
∵-3-(-3)<-1-(-3)<4-(-3),
∴.
故选:B.
【点睛】
本题主要考查二次函数图象上点的坐标特征,解题的关键是掌握二次函数的图象与性质.
7、B
【分析】
设长方形草地的长为x,宽为y,则可求得增加后长及减少后的宽,从而可求得现在的面积,与原面积比较即可得到答案.
【详解】
设长方形草地的长为x,宽为y,则其面积为xy;增加后长为(1+30%)x,减少后的宽为(1-20%)y,此时的面积为(1+30%)x×(1-20%)y=1.04xy,1.04xy−xy=0.04xy,0.04xy÷xy×100%=4%.即这块长方形草地的面积比原来增加了4%.
故选:B
【点睛】
本题考查了列代数式,根据题意设长方形草地的长与宽,进而求得原来的面积及长宽变化后的面积是关键.
8、B
【分析】
根据等量关系:原价×(1-x)2=现价列方程即可.
【详解】
解:根据题意,得:,
故答案为:B.
【点睛】
本题考查一元二次方程的应用,找准等量关系列出方程是解答的关键.
9、D
【分析】
根据题意将方程常数项移到右边,未知项移到左边,然后两边都加上4,左边化为完全平方式,右边合并即可得到答案.
【详解】
,
整理得:,
配方得:,即.
故选:D.
【点睛】
本题考查用配方法解一元二次方程,掌握配方法的步骤是解题的关键.
10、C
【分析】
根据平均数、中位数、众数和方差的定义逐一求解可得.
【详解】
A、平均数为,故此选项不符合题意;
B、样本数据为1、2、3、3、6,则中位数为3,故此选项不符合题意;
C、方差为,故此选项符合题意;
D、众数为3,故此选项不符合题意.
故选:C.
【点睛】
本题考查了众数、平均数、中位数、方差.平均数平均数表示一组数据的平均程度.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数);方差是用来衡量一组数据波动大小的量.
二、填空题
1、4
【分析】
先根据折叠的性质得DA=DF,∠ADE=∠FDE,再根据平行线的性质和等量代换得到∠B=∠BMD,则DB=DM,接着利用比例的性质得到FM=DM,然后证明△FMN∽△FDE,从而利用相似比可计算出MN的长.
【详解】
解:∵△ADE沿直线DE翻折后与△FDE重合,
∴DA=DF,∠ADE=∠FDE,
∵DE∥BC,
∴∠ADE=∠B,∠FDE=∠BMD,
∴∠B=∠BMD,
∴DB=DM,
∵= ,
∴=2,
∴=2,
∴FM=DM,
∵MN∥DE,
∴△FMN∽△FDE,
∴== ,
∴MN=DE=×8=4.
故答案为:4
【点睛】
本题主要考查了相似三角形的判定和性质,平行线分线段成比例,图形的折叠,熟练掌握相似三角形的判定和性质,平行线分线段成比例,图形的折叠性质是解题的关键.
2、
【分析】
根据折叠的性质,可得 ,从而得到,再由AB':B'C=3:2,AB=6,可得,从而得到,进而得到,然后设点D到AC的距离是 ,即可求解.
【详解】
解:∵将△ABD沿直线AD翻折后,点B恰好落在边AC上B'点,
∴ ,
∴,
∵AB':B'C=3:2,AB=6,
∴,
∴ ,
∴ ,
∴,
设点D到AC的距离是 ,
∴ ,
解得: .
故答案为:
【点睛】
本题主要考查了图形的折叠,全等三角形的性质,根据题意得到是解题的关键.
3、
【分析】
根据相反数与倒数的概念可得答案.
【详解】
解:∵某数的相反数是﹣2,
∴这个数为2,
∴该数的倒数是.
故答案为:.
【点睛】
本题考查了相反数与倒数的概念,掌握其概念是解决此题的关键.
4、
【分析】
第四象限点的特征是,所以当横坐标只能为2或3,纵坐标只能是或,画出列表图或树状图,算出满足条件的情况,进一步求得概率即可.
【详解】
如下图:
| -4 | -1 | 2 | 3 |
-4 |
|
|
|
|
-1 |
|
|
|
|
2 |
|
|
|
|
3 |
|
|
|
|
∵第四象限点的坐标特征是,
∴满足条件的点分别是: ,共4种情况,
又∵从列表图知,共有12种等可能性结果,
∴点在第四象限的概率为.
故答案为:
【点睛】
本题主要考察概率的求解,要熟悉树状图或列表图的要点是解题关键.
5、33
【分析】
根据线段垂直平分线的性质,可得AD=CD,AC=2AE= ,再由的周长为23,可得AB+BC= ,即可求解.
【详解】
解:∵是边的垂直平分线,
∴AD=CD,AC=2AE= ,
∴AD+BD=CD+BD=BC,
∵的周长为23,
∴AB+AD+BD=AB+BC= ,
∴的周长为 .
故答案为:33
【点睛】
本题主要考查了线段垂直平分线的性质定理,熟练掌握线段垂直平分线上的点到线段两端的距离相等是解题的关键.
三、解答题
1、
(1)
(2)图表见解析,
【分析】
(1)根据题意可得一共有4种等可能结果,甲同学选取A图片链接题目有1种结果,再根据概率公式,即可求解;
(2)根据题意,列出表格,可得到共有12种结果,每种结果出现的可能性相同,其中甲、乙同学选取图片A和B图片链接的题目有2种,再根据概率公式,即可求解.
(1)
解:根据题意得:甲同学选取A图片链接题目的概率是;
(2)
解:根据题意,列表如下:
A | B | C | D | |
A | (A,B) | (A,C) | (A,D) | |
B | (B,A) | (B,C) | (B,D) | |
C | (C,A) | (C,B) | (C,D) | |
D | (D,A) | (D,B) | (D,C) |
共有12种结果,每种结果出现的可能性相同,其中甲、乙同学选取图片A和B图片链接的题目有2种:(A,B),(B,A),
∴P(全班同学作答图片A和B所链接的题目).
【点睛】
本题主要考查了用列表法或画树状图法求概率,根据题意,画出表格是解题的关键.
2、
(1)
(2)
【分析】
(1)连接、,根据,是以为直径的半圆周的三等分点,证明出、是等边三角形,即可求解;
(2)根据(1)得、是等边三角形,证明出,可以将问题转化为,即可求解.
(1)
解:解:连接、,
,是以为直径的半圆周的三等分点,
,,
又,
、是等边三角形,
;
(2)
解:根据(1)得、是等边三角形,
在和中,,
,
.
【点睛】
本题考查了扇形面积的计算,全等三角形的判定及性质、圆心角定理,解题的关键是将阴影部分的面积转化为扇形的面积,难度一般.
3、
(1)六月份销售额最高,二月份销售额最低,销售额最高的月份比最低的月份多4.7万元
(2)这家公司2021年6月的销售额与2020年12月相比是上升了,上升了0.6万元.
【分析】
(1)由2021年上半年的销售额,利用表格即可确定出1月-6月的销售额,可确定出最高与最低销售额;求出销售额最高与最低之差即可;
(2)求出2021年6月的销售额与2020年12月的销售额之差即可做出判断.
(1)
解:设2020年12月完成销售额为a万元.
根据题意得:2021年上半年的销售额分别为:
a-1.6;a-1.6-2.5=a-4.1;a-4.1+2.4=a-1.7;a-1.7+1.2=a-0.5;a-0.5-0.7=a-1.2;a-1.2+1.8=a+0.6,
a+0.6-( a-4.1)=4.7(万元);
则六月份销售额最高,二月份销售额最低,销售额最高的月份比最低的月份多4.7万元;
(2)
解:由(1)2020年12月完成销售额为a万元,2021年6月的销售额为a+0.6万元,
a+0.6-a=0.6>0,
所以这家公司2021年6月的销售额与2020年12月相比是上升了,上升了0.6万元.
【点睛】
本题考查了列代数式,整式的加减,以及正数与负数,弄清题意是解本题的关键.
4、x-2y
【分析】
根据完全平方公式、平方差公式及整式的各运算法则进行计算即可.
【详解】
解:原式
.
【点睛】
本题考查了整式的混合运算,熟练掌握各运算法则及公式是解题的关键.
5、.
【分析】
先计算右边算式,再把系数化为1即可得答案.
【详解】
,
.
【点睛】
本题考查解一元一次方程,熟练掌握解一元一次方程的步骤是解题关键.
【历年真题】2022年河北省中考数学考前摸底测评 卷(Ⅱ)(含详解): 这是一份【历年真题】2022年河北省中考数学考前摸底测评 卷(Ⅱ)(含详解),共39页。试卷主要包含了若,则下列不等式正确的是,把 写成省略括号后的算式为,下列说法中正确的个数是,某玩具店用6000元购进甲,下列变形中,正确的是等内容,欢迎下载使用。
【历年真题】2022年河北省新乐市中考数学考前摸底测评 卷(Ⅱ)(含答案解析): 这是一份【历年真题】2022年河北省新乐市中考数学考前摸底测评 卷(Ⅱ)(含答案解析),共20页。试卷主要包含了使分式有意义的x的取值范围是,下列等式成立的是,有下列四种说法,如果,那么的取值范围是等内容,欢迎下载使用。
【历年真题】2022年河北省石家庄市中考数学考前摸底测评 卷(Ⅱ)(含详解): 这是一份【历年真题】2022年河北省石家庄市中考数学考前摸底测评 卷(Ⅱ)(含详解),共25页。试卷主要包含了计算的值为,若分式有意义,则的取值范围是,下列变形中,正确的是等内容,欢迎下载使用。