|试卷下载
终身会员
搜索
    上传资料 赚现金
    2024年陕西省中考数学模拟试卷16
    立即下载
    加入资料篮
    2024年陕西省中考数学模拟试卷1601
    2024年陕西省中考数学模拟试卷1602
    2024年陕西省中考数学模拟试卷1603
    还剩28页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2024年陕西省中考数学模拟试卷16

    展开
    这是一份2024年陕西省中考数学模拟试卷16,共31页。试卷主要包含了下列各数中,属于无理数的是等内容,欢迎下载使用。

    一.选择题(共 10 小题,每小题 3 分,计 30 分.每小题只有一个选项是符合题意的)
    1.下列各数中,属于无理数的是
    A.B.1.414C.D.
    2.如图,将矩形纸片绕边所在的直线旋转一周,得到的立体图形是( )
    A. B. C. D.
    3.如图,一个弹簧不挂重物时长6cm,挂上重物后,在弹性限度内弹簧伸长的长度与所挂重物的质量成正比.弹簧总长y(单位:cm)关于所挂物体质量x(单位:kg)的函数图象如图所示,则图中a的值是( )
    A.3B.4
    C.5D.6
    5.不等式组的解集在数轴上表示正确的是( )
    A.B.
    C.D.
    6.数据12、15、18、17、10、19的中位数为( )
    A.14B.15C.16D.17
    7.一副直角三角板如图放置,使两三角板的斜边互相平行,每块三角板的直角顶点都在另一三角板的斜边上,则∠1的度数为( )
    A.30°B.45°
    C.55°D.60°
    8.关于的一元二次方程有两个相等的实数根,则的值为( )
    A.B.C.D.
    9.如图,已知点是菱形的对角线延长线上一点,过点分别作、延长线的垂线,垂足分别为点、.若,,则的值为( )
    B.
    C.2D.
    10.二次函数的图象如图所示,则下列结论中不正确的是( )
    B.函数的最大值为
    当时,
    D.
    第Ⅱ卷(非选择题共 90 分)
    二.填空题(共 6 小题,每小题 3 分,计 18 分)
    11._______.
    12.分解因式:=______.
    13.正八边形中,每个内角与每个外角的度数之比是 .
    14.如图,在边长为4的正方形ABCD中,点E是BC的中点,点F在CD上,且CF=3BF,AE,BF相交于点G,则AGF的面积是________.
    15.若,是反比例函数图象上的两点,则、的大小关系是______(填“>”、“=”或“<”)
    16.在△ABC中,若AB=6,∠ACB=45°.则△ABC的面积的最大值为 .
    三.解答题(共 9 小题,计 72 分.解答应写出过程)
    17.计算:|﹣5|﹣(π﹣2020)0+2cs60°+(13)﹣1.
    18.如图,点C、E、F、B在同一直线上,点A、D在BC异侧,AB∥CD,AE=DF,∠A=∠D.求证:AB=CD;
    某中学全校学生参加了“交通法规”知识竞赛,为了解全校学生竞赛成绩的情况,随机抽取了一部分学生的成绩,分成四组:A:60≤x<70;B:70≤x<80;C:80≤x<90;
    D:90≤x≤100,并绘制出如图不完整的统计图.
    (1)求被抽取的学生成绩在C:80≤x<90组的有多少人?
    (2)所抽取学生成绩的中位数落在哪个组内?
    (3)若该学校有1500名学生,估计这次竞赛成绩在A:60≤x<70组的学生有多少人?
    20.如图,在河对岸有一矩形场地ABCD,为了估测场地大小,在笔直的河岸l上依次取点E,F,N,使AE⊥l,BF⊥l,点N,A,B在同一直线上.在F点观测A点后,沿FN方向走到M点,观测C点发现∠1=∠2.测得EF=15米,FM=2米,MN=8米,∠ANE=45°,则场地的边AB和BC分别长多少米?
    21.在深化教育综合改革、提升区域教育整体水平的进程中,某中学以兴趣小组为载体,加强社团建设,艺术活动学生参与面达,通过调查统计,八年级二班参加学校社团的情况(每位同学只能参加其中一项):A.剪纸社团,B.泥塑社团,C.陶笛社团,D.书法社团,E.合唱社团,并绘制了如下两幅不完整的统计图.

    (1)该班共有学生_________人,并把条形统计图补充完整;
    (2)扇形统计图中,___________,___________,
    参加剪纸社团对应的扇形圆心角为_______度;
    (3)小鹏和小兵参加了书法社团,由于参加书法社团几位同学都非常优秀,老师将从书法社团的学生中选取2人参加学校组织的书法大赛,请用“列表法”或“画树状图法”,求出恰好是小鹏和小兵参加比赛的概率.
    22.某商店代理销售一种水果,六月份的销售利润y(元)与销售量x(kg)之间函数关系的图象如图中折线所示.请你根据图象及这种水果的相关销售记录提供的信息,解答下列问题:
    (1)截止到6月9日,该商店销售这种水果一共获利多少元?
    (2)求图象中线段BC所在直线对应的函数表达式.
    23.如图,AB是⊙O的直径,C为⊙O上一点,连接AC,CE⊥AB于点E,D是直径AB延长线上一点,且∠BCE=∠BCD.
    (1)求证:CD是⊙O的切线;
    (2)若AD=8,BECE=12,求CD的长.
    24.如图(1),在平面直角坐标系中抛物线与轴交于点,与轴交于点,且经过点,连接,,作于点,将沿轴翻折,点的对应点为点.解答下列问题:
    (1)抛物线的解析式为_______,顶点坐标为________;
    (2)判断点是否在直线上,并说明理由;
    (3)如图(2),将图(1)中沿着平移后,得到.若边在线段上,点在抛物线上,连接,求四边形的面积.
    25.在△ABC中,∠BAC═90°,AB=AC,点D在边BC上,DE⊥DA且DE=DA,AE交边BC于点F,连接CE.
    (1)特例发现:如图1,当AD=AF时,
    ①求证:BD=CF;
    ②推断:∠ACE= 90 °;
    (2)探究证明:如图2,当AD≠AF时,请探究∠ACE的度数是否为定值,并说明理由;
    (3)拓展运用:如图3,在(2)的条件下,当EFAF=13时,过点D作AE的垂线,交AE于点P,交AC于点K,若CK=163,求DF的长.
    2024 年陕西省中考数学模拟试卷
    第Ⅰ卷(选择题 共 30 分)
    一.选择题(共 10 小题,每小题 3 分,计 30 分.每小题只有一个选项是符合题意的)
    1.下列各数中,属于无理数的是
    A.B.1.414C.D.
    【答案】C
    【解析】=2是有理数;是无理数,故选C.
    2.如图,将矩形纸片绕边所在的直线旋转一周,得到的立体图形是( )
    A. B. C. D.
    【答案】A
    【分析】根据矩形绕一边旋转一周得到圆柱体示来解答.
    【详解】解:矩形纸片绕边所在的直线旋转一周,得到的立体图形是圆柱体.故选:A.
    【点睛】本题考查了点、线、面、体,熟练掌握“面动成体”得到的几何体的形状是解题的关键.
    3.如图,一个弹簧不挂重物时长6cm,挂上重物后,在弹性限度内弹簧伸长的长度与所挂重物的质量成正比.弹簧总长y(单位:cm)关于所挂物体质量x(单位:kg)的函数图象如图所示,则图中a的值是( )
    A.3B.4C.5D.6
    【答案】A
    【解析】
    【分析】
    根据题目中的函数解析式,可以求得y与x的函数关系式,然后令y=7.5,求出x的值,即此时x的值就是a的值,本题得以解决.
    【详解】
    解:设y与x的函数关系式为y=kx+b,

    解得,,
    即y与x的函数关系式是y=0.5x+6,
    当y=7.5时,7.5=0.5x+6,得x=3,
    即a的值为3,
    故选:A.
    【点睛】
    本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.
    5.不等式组的解集在数轴上表示正确的是( )
    A.B.
    C.D.
    【答案】D
    【解析】
    【分析】
    首先解出两个不等式的解集,再根据大小小大中间找确定不等式组的解集.
    【详解】
    解:,
    由①得:x>1,
    由②得:x≤4,
    不等式组的解集为:1<x≤4,
    故选:D.
    【点睛】
    此题主要考查了一元一次不等式组的解法,关键是正确确定两个不等式的解集.
    6.数据12、15、18、17、10、19的中位数为( )
    A.14B.15C.16D.17
    【答案】C
    【解析】
    【分析】
    首先将这组数据按大小顺序排列,再利用中位数定义,即可求出这组数据的中位数.
    【详解】
    解:把这组数据从小到大排列为:10,12,15,17,18,19,则这组数据的中位数是=16.
    故选:C.
    【点睛】
    此题考查了中位数的定义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.
    7.一副直角三角板如图放置,使两三角板的斜边互相平行,每块三角板的直角顶点都在另一三角板的斜边上,则∠1的度数为( )
    A.30°B.45°C.55°D.60°
    【答案】B
    【解析】
    【分析】
    根据平行线的性质即可得到结论.
    【详解】
    解:如图
    ∵AB∥CD,
    ∴∠1=∠D=45°,
    故选:B.
    【点睛】
    本题考查了平行线的性质以及直角三角板的各角度数,解答关键是根据利用平行线的性质找到相应角度之间的关系.
    8.关于的一元二次方程有两个相等的实数根,则的值为( )
    A.B.C.D.
    【答案】A
    【解析】
    【分析】
    由题意,根据一元二次方程根的判别式值为零,求可解.
    【详解】
    解:由一元二次方程有两个相等实根可得,判别式等于0可得, ,得,
    故应选A.
    【点睛】
    本题考查了一元二次方程根的情况与判别式△的关系,解答时注意△=0⇔方程有两个相等的实数根.
    9.如图,已知点是菱形的对角线延长线上一点,过点分别作、延长线的垂线,垂足分别为点、.若,,则的值为( )
    A.B.C.2D.
    【答案】B
    【分析】
    根据菱形的基性质,得到∠PAE=30°,,利用勾股理求出AC=,则AP= +PC,PE=AP=+PC ,由∠PCF=∠DCA=30°,得到PF=PC ,最后算出结果.
    【详解】
    解:∵四边形ABCD是菱形且∠ABC=120°,AB=2,
    ∴AB=BC=CD=DA=2,∠BAD=60°,AC⊥BD,
    ∴∠CAE=30︒,
    ∵AC⊥BD,∠CAE=30°,AD=2,
    ∴AC=,
    ∴AP=+PC,
    在直角△AEP中,
    ∵∠PAE=30°,AP=+PC,
    ∴PE=AP=+PC,
    在直角△PFC中,
    ∵∠PCF=30°,
    ∴PF=PC,
    ∴=+PC-PC=,
    故选:B.
    【点睛】
    本题主要考查了菱形的基本性质、勾股定理的应用以及在直角三角形中,30°角所对的直角边等于斜边的一半,关键会在直角三角形中应用30°.
    10.二次函数的图象如图所示,则下列结论中不正确的是( )
    A.B.函数的最大值为
    C.当时,D.
    【答案】D
    【分析】
    根据抛物线开口方向、抛物线的对称轴位置和抛物线与y轴的交点位置可判断a、b、c的符号,利用抛物线的对称性可得到抛物线与x轴的另一个交点坐标为(-3,0),从而分别判断各选项.
    【详解】
    解:∵抛物线开口向下,
    ∴a<0,
    ∵抛物线的对称轴为直线x=-1,
    ∴,即b=2a,则b<0,
    ∵抛物线与y轴交于正半轴,
    ∴c>0,
    则abc>0,故A正确;
    当x=-1时,y取最大值为,故B正确;
    由于开口向上,对称轴为直线x=-1,
    则点(1,0)关于直线x=-1对称的点为(-3,0),
    即抛物线与x轴交于(1,0),(-3,0),
    ∴当时,,故C正确;
    由图像可知:当x=-2时,y>0,
    即,故D错误;
    故选D.
    【点睛】
    本题考查了二次函数与系数的关系:对于二次函数y=ax2+bx+c(a≠0),二次项系数a决定抛物线的开口方向和大小:当a>0时,抛物线向上开口;抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab>0),对称轴在y轴左; 当a与b异号时(即ab<0),对称轴在y轴右.常数项c决定抛物线与y轴交点:抛物线与y轴交于(0,c).
    第Ⅱ卷(非选择题共 90 分)
    二.填空题(共 6 小题,每小题 3 分,计 18 分)
    11._______.
    【答案】2.
    【分析】分别根据绝对值的性质、0指数幂的运算法则计算出各数,再进行计算即可.
    【详解】解:,
    故答案是:2.
    【点睛】本题考查的是绝对值的性质、0指数幂,熟悉相关运算法则是解答此题的关键.
    12.分解因式:=______.
    【答案】x(x+2)(x﹣2).
    【详解】
    试题分析:==x(x+2)(x﹣2).故答案为x(x+2)(x﹣2).
    考点:提公因式法与公式法的综合运用;因式分解.
    13.正八边形中,每个内角与每个外角的度数之比是 .
    【答案】3:1
    【分析】
    根据正八边形的外角和等于360°,求出每个外角的度数,再求出每个内角的度数,进而即可求解.
    【详解】
    解:正八边形中,每个外角=360°÷8=45°,每个内角=180°-45°=135°,
    ∴每个内角与每个外角的度数之比=135°:45°=3:1,
    故选D.
    【点睛】
    本题主要考查正多边形的内角和外角,熟练掌握正多边形的外角和等于360°,是解题的关键.
    14.如图,在边长为4的正方形ABCD中,点E是BC的中点,点F在CD上,且CF=3BF,AE,BF相交于点G,则AGF的面积是________.
    【答案】.
    【分析】
    延长AG交DC延长线于M,过G作GH⊥CD,交AB于N,先证明△ABE≌△MCE,由CF=3DF,可求DF=1,CF=3,再证△ABG∽△MFG,则利用相似比可计算出GN,再利用两三角形面积差计算S△DEG即可.
    【详解】
    解:延长AG交DC延长线于M,过G作GH⊥CD,交AB于N,如图,
    ∵点E为BC中点,
    ∴BE=CE,
    在△ABE和△MCE中,

    ∴△ABE≌△MCE(ASA),
    ∴AB=MC=4,
    ∵CF=3DF,CF+DF=4,
    ∴DF=1,CF=3,FM=FC+CM=3+4=7,
    ∵AB∥MF,
    ∴∠ABG=∠MFG,∠AGB=∠MGF,
    ∴△ABG∽△MFG,
    ∴,
    ∵,
    ∴,
    S△AFG=S△AFB-S△AGB=,
    故答案为.
    【点睛】
    本题考查了正方形的性质,三角形全等判定与性质,三角形相似判定与性质,割补法求三角形面积,掌握正方形的性质,三角形全等判定与性质,三角形相似判定与性质,割补法求三角形面积,熟练运用相似比计算线段的长是解题关键.
    15.若,是反比例函数图象上的两点,则、的大小关系是______(填“>”、“=”或“<”)
    【答案】<
    【分析】
    先根据不等式的性质判断,再根据反比例函数的增减性判断即可.
    【详解】
    解:∵


    ∴反比例函数图像每一个象限内,y随x的增大而增大
    ∵1<3
    ∴<
    故答案为:<.
    【点睛】
    本题考查反比例函数的增减性、不等式的性质、熟练掌握反比例函数的性质是关键.
    16.在△ABC中,若AB=6,∠ACB=45°.则△ABC的面积的最大值为 92+9 .
    【分析】首先过C作CM⊥AB于M,由弦AB已确定,可得要使△ABC的面积最大,只要CM取最大值即可,即可得当CM过圆心O时,CM最大,然后由圆周角定理,证得△AOB是等腰直角三角形,则可求得CM的长,继而求得答案.
    【解析】作△ABC的外接圆⊙O,过C作CM⊥AB于M,
    ∵弦AB已确定,
    ∴要使△ABC的面积最大,只要CM取最大值即可,
    如图所示,当CM过圆心O时,CM最大,
    ∵CM⊥AB,CM过O,
    ∴AM=BM(垂径定理),
    ∴AC=BC,
    ∵∠AOB=2∠ACB=2×45°=90°,
    ∴OM=AM=12AB=12×6=3,
    ∴OA=OM2+AM2=32,
    ∴CM=OC+OM=32+3,
    ∴S△ABC=12AB•CM=12×6×(32+3)=92+9.
    故答案为:92+9.
    三.解答题(共 9 小题,计 72 分.解答应写出过程)
    17.计算:|﹣5|﹣(π﹣2020)0+2cs60°+(13)﹣1.
    【分析】直接利用绝对值以及零指数幂的性质和特殊角的三角函数值、负整数指数幂的性质分别化简得出答案.
    【解析】原式=5﹣1+2×12+3
    =5﹣1+1+3
    =8.
    18.如图,点C、E、F、B在同一直线上,点A、D在BC异侧,AB∥CD,AE=DF,∠A=∠D.
    (1)求证:AB=CD;
    【分析】(1)根据平行线的性质求出∠B=∠C,根据AAS推出△ABE≌△DCF,根据全等三角形的性质得出即可;
    【解答】(1)证明:∵AB∥CD,
    ∴∠B=∠C,
    在△ABE和△DCF中,
    ∠A=∠D∠B=∠CAE=DF,
    ∴△ABE≌△DCF(AAS),
    ∴AB=CD;
    19.某中学全校学生参加了“交通法规”知识竞赛,为了解全校学生竞赛成绩的情况,随机抽取了一部分学生的成绩,分成四组:A:60≤x<70;B:70≤x<80;C:80≤x<90;D:90≤x≤100,并绘制出如图不完整的统计图.
    (1)求被抽取的学生成绩在C:80≤x<90组的有多少人?
    (2)所抽取学生成绩的中位数落在哪个组内?
    (3)若该学校有1500名学生,估计这次竞赛成绩在A:60≤x<70组的学生有多少人?
    【分析】(1)根据B组人数和所占的百分比,可以求得本次调查的人数,再根据条形统计图中的数据,即可得到C组的人数;
    (2)根据条形统计图中的数据,可以得到所抽取学生成绩的中位数落在哪个组内;
    (3)根据条形统计图中的数据,可以计算出这次竞赛成绩在A:60≤x<70组的学生有多少人.
    【解析】(1)本次抽取的学生有:12÷20%=60(人),
    C组学生有:60﹣6﹣12﹣18=24(人),
    即被抽取的学生成绩在C:80≤x<90组的有24人;
    (2)所抽取学生成绩的中位数落在C:80≤x<90这一组内;
    (3)1500×660=150(人),
    答:这次竞赛成绩在A:60≤x<70组的学生有150人.
    20.如图,在河对岸有一矩形场地ABCD,为了估测场地大小,在笔直的河岸l上依次取点E,F,N,使AE⊥l,BF⊥l,点N,A,B在同一直线上.在F点观测A点后,沿FN方向走到M点,观测C点发现∠1=∠2.测得EF=15米,FM=2米,MN=8米,∠ANE=45°,则场地的边AB为 152 米,BC为 202 米.
    【分析】根据已知条件得到△ANE和△BNF是等腰直角三角形,求得AE=EN=15+2+8=25(米),BF=FN=2+8=10(米),于是得到AB=AN﹣BN=152(米);过C作CH⊥l于H,过B作PQ∥l交AE于P,交CH于Q,根据矩形的性质得到PE=BF=QH=10,PB=EF=15,BQ=FH,根据相似三角形的性质即可得到结论.
    【解析】∵AE⊥l,BF⊥l,
    ∵∠ANE=45°,
    ∴△ANE和△BNF是等腰直角三角形,
    ∴AE=EN,BF=FN,
    ∴EF=15米,FM=2米,MN=8米,
    ∴AE=EN=15+2+8=25(米),BF=FN=2+8=10(米),
    ∴AN=252,BN=102,
    ∴AB=AN﹣BN=152(米);
    过C作CH⊥l于H,过B作PQ∥l交AE于P,交CH于Q,
    ∴AE∥CH,
    ∴四边形PEHQ和四边形PEFB是矩形,
    ∴PE=BF=QH=10,PB=EF=15,BQ=FH,
    ∵∠1=∠2,∠AEF=∠CHM=90°,
    ∴△AEF∽△CHM,
    ∴CHHM=AEEF=2515=53,
    ∴设MH=3x,CH=5x,
    ∴CQ=5x﹣10,BQ=FH=3x+2,
    ∵∠APB=∠ABC=∠CQB=90°,
    ∴∠ABP+∠PAB=∠ABP+∠CBQ=90°,
    ∴∠PAB=∠CBQ,
    ∴△APB∽△BQC,
    ∴APBQ=PBCQ,
    ∴153x+2=155x−10,
    ∴x=6,
    ∴BQ=CQ=20,
    ∴BC=202,
    故答案为:152,202.
    21.在深化教育综合改革、提升区域教育整体水平的进程中,某中学以兴趣小组为载体,加强社团建设,艺术活动学生参与面达,通过调查统计,八年级二班参加学校社团的情况(每位同学只能参加其中一项):A.剪纸社团,B.泥塑社团,C.陶笛社团,D.书法社团,E.合唱社团,并绘制了如下两幅不完整的统计图.

    (1)该班共有学生_________人,并把条形统计图补充完整;
    (2)扇形统计图中,___________,___________,参加剪纸社团对应的扇形圆心角为_______度;
    (3)小鹏和小兵参加了书法社团,由于参加书法社团几位同学都非常优秀,老师将从书法社团的学生中选取2人参加学校组织的书法大赛,请用“列表法”或“画树状图法”,求出恰好是小鹏和小兵参加比赛的概率.
    【答案】(1),详见图示
    (2),,
    (3)
    【分析】(1)利用C类人数除以所占百分比可得调查的学生人数;用总人数减去其它四项的人数可得到D的人数,然后补图即可;
    (2)根据总数与各项人数比值可求出m,n的值,A项目的人数与总人数比值乘即可得出圆心角的度数;
    (3)画树状图展示所有20种等可能的结果数,再找出恰好选中小鹏和小兵的结果数,然后利用概率公式求解.
    【详解】(1)本次调查的学生总数:(人),
    D、书法社团的人数为:(人),如图所示

    故答案为:50;
    (2)由图知,,
    ∴,参加剪纸的圆心角度数为
    故答案为:20,10,
    (3)用表示社团的五个人,其中A,B分别代表小鹏和小兵树状图如下:

    共20种等可能情况,有2种情恰好是小鹏和小兵参加比赛,
    故恰好选中小鹏和小兵的概率为.
    【点睛】本题考查条形统计图和扇形统计图的综合运用,列表法与画树状图法求概率,解题的关键是掌握列表法与画树状图法求概率的方法:先利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式求事件A或B的概率.
    22.某商店代理销售一种水果,六月份的销售利润y(元)与销售量x(kg)之间函数关系的图象如图中折线所示.请你根据图象及这种水果的相关销售记录提供的信息,解答下列问题:
    (1)截止到6月9日,该商店销售这种水果一共获利多少元?
    (2)求图象中线段BC所在直线对应的函数表达式.
    【分析】(1)由表格信息可知,从6月1日到6月9日,成本价8元/kg,售价10元/kg,一共售出200kg,根据利润=每千克的利润×销售量列式计算即可;
    (2)设B点坐标为(a,400),根据题意列方程求出点B的坐标,设线段BC所在直线对应的函数表达式为y=kx+b,利用待定系数法解答即可.
    【解析】(1)200×(10﹣8)=400(元)
    答:截止到6月9日,该商店销售这种水果一共获利400元;
    (2)设点B坐标为(a,400),根据题意得:
    (10﹣8)×(600﹣a)+(10﹣8.5)×200=1200﹣400,
    解这个方程,得a=350,
    ∴点B坐标为(350,400),
    设线段BC所在直线对应的函数表达式为y=kx+b,则:
    350k+b=400800k+b=1200,解得k=169b=−20009,
    ∴线段BC所在直线对应的函数表达式为y=169x−20009.
    23.如图,AB是⊙O的直径,C为⊙O上一点,连接AC,CE⊥AB于点E,D是直径AB延长线上一点,且∠BCE=∠BCD.
    (1)求证:CD是⊙O的切线;
    (2)若AD=8,BECE=12,求CD的长.
    【分析】(1)连接OC,根据圆周角定理得到∠ACB=90°,根据余角的性质得到∠A=∠ECB,求得∠A=∠BCD,根据等腰三角形的性质得到∠A=∠ACO,等量代换得到∠ACO=∠BCD,求得∠DCO=90°,于是得到结论;
    (2)设BC=k,AC=2k,根据相似三角形的性质即可得到结论.
    【解析】(1)证明:连接OC,
    ∵AB是⊙O的直径,
    ∴∠ACB=90°,
    ∵CE⊥AB,
    ∴∠CEB=90°,
    ∴∠ECB+∠ABC=∠ABC+∠CAB=90°,
    ∴∠A=∠ECB,
    ∵∠BCE=∠BCD,
    ∴∠A=∠BCD,
    ∵OC=OA,
    ∴∠A=∠ACO,
    ∴∠ACO=∠BCD,
    ∴∠ACO+∠BCO=∠BCO+∠BCD=90°,
    ∴∠DCO=90°,
    ∴CD是⊙O的切线;
    (2)解:∵∠A=∠BCE,
    ∴tanA=BCAC=tan∠BCE=BECE=12,
    设BC=k,AC=2k,
    ∵∠D=∠D,∠A=∠BCD,
    ∴△ACD∽△CBD,
    ∴BCAC=CDAD=12,
    ∵AD=8,
    ∴CD=4.
    24.如图(1),在平面直角坐标系中抛物线与轴交于点,与轴交于点,且经过点,连接,,作于点,将沿轴翻折,点的对应点为点.解答下列问题:
    (1)抛物线的解析式为_______,顶点坐标为________;
    (2)判断点是否在直线上,并说明理由;
    (3)如图(2),将图(1)中沿着平移后,得到.若边在线段上,点在抛物线上,连接,求四边形的面积.
    【答案】(1),(4,);(2)在,理由见解析;(3)22.
    【解析】
    【分析】
    (1)根据待定系数法将B、C两点坐标直接代入解析式即可求出a、b,用配方法将解析式变形为顶点式即可得出顶点坐标;
    (2)由三角形ABO是直角三角形,求得∠MAO=∠B,继而求得tan∠MAO= tan∠NAO = tan∠CAO= ,从而∠CAO=∠NAO,即AC与AN共线;
    (3)由平移规律可知,AF//OB,根据 直线OB解析式求出直线AF解析式,进而求出直线AF与抛物线交点,得F坐标,即可四边形的面积等于四边形AODF面积即可解.
    【详解】
    解:把点,点代入抛物线解析式得:
    ,解得,
    即抛物线解析式为:,
    ∴,
    ∴顶点坐标为(4,)
    故答案为:,(4,);
    (2)∵与y轴交于A点,
    ∴A点坐标为(0,4),
    又∵B点坐标为(8,4),故AB⊥y轴,
    ∵AM⊥OB,
    ∴∠MAB+∠B=∠MAB+∠MAO,
    ∴∠MAO=∠B,
    ∵OA=4,AB=8,
    ∴tan∠MAO= tan∠B=,
    将沿轴翻折,点的对应点为点.
    ∴tan∠MAO= tan∠NAO =,
    又∵ OC=2,tan∠CAO,
    ∴∠CAO=∠NAO,即AC与AN共线,
    故N点直线AC上;
    (3)∵B点坐标为(8,4),
    ∴直线OB解析式为,
    平移规律可知,AF//OB,又因为点A坐标为,
    ∴直线AF解析式为,
    联立解析式得方程组: ,解得,,
    故F点坐标为:,
    由平移性质可知四边形AODF是平行四边形,≌.
    ∴四边形的面积=平行四边形AODF面积,
    ∵平行四边形AODF面积=,
    ∴四边形的面积为22.
    【点睛】
    本题是函数与几何综合题,涉及了待定系数法求解析式、二次函数、一次函数的应用、解直角三角形、平移、轴对称等知识,解题的关键是灵活运用所学知识解决问题,会构建直角三角形求点坐标,学会构建一次函数,利用方程组求两函数图象的交点坐标,属于中考压轴题.
    25.在△ABC中,∠BAC═90°,AB=AC,点D在边BC上,DE⊥DA且DE=DA,AE交边BC于点F,连接CE.
    (1)特例发现:如图1,当AD=AF时,
    ①求证:BD=CF;
    ②推断:∠ACE= 90 °;
    (2)探究证明:如图2,当AD≠AF时,请探究∠ACE的度数是否为定值,并说明理由;
    (3)拓展运用:如图3,在(2)的条件下,当EFAF=13时,过点D作AE的垂线,交AE于点P,交AC于点K,若CK=163,求DF的长.
    【分析】(1)①证明△ABD≌△ACF(AAS)可得结论.
    ②利用四点共圆的性质解决问题即可.
    (2)结论不变.利用四点共圆证明即可.
    (3)如图3中,连接EK.首先证明AB=AC=3EC,设EC=a,则AB=AC=3a,在Rt△KCE中,利用勾股定理求出a,再求出DP,PF即可解决问题.
    【解答】(1)①证明:如图1中,
    ∵AB=AC,
    ∴∠B=∠ACF,
    ∵AD=AF,
    ∴∠ADF=∠AFD,
    ∴∠ADB=∠AFC,
    ∴△ABD≌△ACF(AAS),
    ∴BD=CF.
    ②结论:∠ACE=90°.
    理由:如图1中,∵DA=DE,∠ADE=90°,AB=AC,∠BAC=90°,
    ∴∠ACD=∠AED=45°,
    ∴A,D,E,C四点共圆,
    ∴∠ADE+∠ACE=180°,
    ∴∠ACE=90°.
    故答案为90.
    (2)结论:∠ACE=90°.
    理由:如图2中,
    ∵DA=DE,∠ADE=90°,AB=AC,∠BAC=90°,
    ∴∠ACD=∠AED=45°,
    ∴A,D,E,C四点共圆,
    ∴∠ADE+∠ACE=180°,
    ∴∠ACE=90°.
    (3)如图3中,连接EK.
    ∵∠BAC+∠ACE=180°,
    ∴AB∥CE,
    ∴ECAB=EFAF=13,设EC=a,则AB=AC=3a,AK=3a−163,
    ∵DA=DE,DK⊥AE,
    ∴AP=PE,
    ∴AK=KE=3a−163,
    ∵EK2=CK2+EC2,
    ∴(3a−163)2=(163)2+a2,
    解得a=4或0(舍弃),
    ∴EC=4,AB=AC=12,
    ∴AE=AC2+EC2=42+122=410,
    ∴DP=PA=PE=12AE=210,EF=14AE=10,
    ∴PF=FE=10,
    ∵∠DPF=90°,
    ∴DF=DP2+PF2=(210)2+(10)2=52.
    日期
    销售记录
    6月1日
    库存600kg,成本价8元/kg,售价10元/kg(除了促销降价,其他时间售价保持不变).
    6月9日
    从6月1日至今,一共售出200kg.
    6月10、11日
    这两天以成本价促销,之后售价恢复到10元/kg.
    6月12日
    补充进货200kg,成本价8.5元/kg.
    6月30日
    800kg水果全部售完,一共获利1200元.
    日期
    销售记录
    6月1日
    库存600kg,成本价8元/kg,售价10元/kg(除了促销降价,其他时间售价保持不变).
    6月9日
    从6月1日至今,一共售出200kg.
    6月10、11日
    这两天以成本价促销,之后售价恢复到10元/kg.
    6月12日
    补充进货200kg,成本价8.5元/kg.
    6月30日
    800kg水果全部售完,一共获利1200元.
    相关试卷

    2024年陕西省中考数学模拟试卷15: 这是一份2024年陕西省中考数学模拟试卷15,共26页。试卷主要包含了选择题.,填空题.,解答题.等内容,欢迎下载使用。

    2024年陕西省中考数学模拟试卷14: 这是一份2024年陕西省中考数学模拟试卷14,共27页。试卷主要包含了选择题.,填空题.,解答题等内容,欢迎下载使用。

    2024年陕西省中考数学模拟试卷13: 这是一份2024年陕西省中考数学模拟试卷13,共30页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map