|试卷下载
搜索
    上传资料 赚现金
    2023-2024学年江苏省盐城市响水县清源高级中学高一下学期期中数学试题
    立即下载
    加入资料篮
    资料中包含下列文件,点击文件名可预览资料内容
    • 原卷
      江苏省盐城市响水县清源高级中学高一下学期期中数学试题(原卷版).docx
    • 解析
      江苏省盐城市响水县清源高级中学高一下学期期中数学试题(解析版).docx
    2023-2024学年江苏省盐城市响水县清源高级中学高一下学期期中数学试题01
    2023-2024学年江苏省盐城市响水县清源高级中学高一下学期期中数学试题02
    2023-2024学年江苏省盐城市响水县清源高级中学高一下学期期中数学试题03
    2023-2024学年江苏省盐城市响水县清源高级中学高一下学期期中数学试题01
    2023-2024学年江苏省盐城市响水县清源高级中学高一下学期期中数学试题02
    2023-2024学年江苏省盐城市响水县清源高级中学高一下学期期中数学试题03
    还剩3页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2023-2024学年江苏省盐城市响水县清源高级中学高一下学期期中数学试题

    展开
    这是一份2023-2024学年江苏省盐城市响水县清源高级中学高一下学期期中数学试题,文件包含江苏省盐城市响水县清源高级中学高一下学期期中数学试题原卷版docx、江苏省盐城市响水县清源高级中学高一下学期期中数学试题解析版docx等2份试卷配套教学资源,其中试卷共24页, 欢迎下载使用。

    考生注意:1.本试题分为第Ⅰ卷和第Ⅱ卷,共4页.
    2.满分150分,考试时间为120分钟.
    第Ⅰ卷(60分)
    一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.
    1. 若复数z满足z(1+i)=2(i为虚数单位),则在复平面内复数z对应的点位于( )
    A. 第一象限B. 第二象限
    C. 第三象限D. 第四象限
    【答案】D
    【解析】
    【分析】根据复数的乘除法运算,求得,再求其对应点即可判断.
    【详解】∵,∴,
    ∴在复平面内复数z对应的点位于第四象限.
    故选:D.
    2. ( )
    A. B. C. D.
    【答案】A
    【解析】
    【分析】利用两角差的余弦公式即可求解.
    【详解】.
    故选:A.
    3. 下列说法错误的是( )
    A. 球体是旋转体B. 圆柱的母线平行于轴
    C. 斜棱柱的侧面中没有矩形D. 用平面截正棱锥所得的棱台叫做正棱台
    【答案】C
    【解析】
    【分析】利用球体的定义判断;利用圆柱的结构特征判断;举例说明判断;利用正棱台的定义判断.
    【详解】因球体是半圆面绕其直径所在的直线旋转一周所得几何体,
    即球体是旋转体,A正确;
    由圆柱的结构特征知,圆柱的母线平行于圆柱的轴,垂直于其底面,正确;
    如图,斜平行六面体中,若平面,
    则侧面四边形是矩形,错误;

    由正棱台的定义知:用平面截正棱锥所得的棱台叫做正棱台,正确.
    故选:C
    4. 在△ABC中,角A,B,C的对边分别为a,b,c,,,则( )
    A. B. C. D.
    【答案】B
    【解析】
    【分析】由余弦定理计算可得;
    【详解】解:由,得,
    故选:B.
    5. 在中,D为的中点,E为边上的点,且,则( )
    A. B.
    C. D.
    【答案】C
    【解析】
    【分析】根据平面向量的线性运算结合图形即可得解.
    【详解】由E为边上的点,且,
    得.
    故选:C
    6. 设有两条不同的直线和两个不同的平面,则下列命题正确的是( )
    A. 若,则
    B. 若,则
    C. 若,则
    D. 若,则
    【答案】D
    【解析】
    【分析】根据线面平行的性质与判定逐个选项分析即可.
    【详解】若,则可以平行、相交或异面,故A错误;
    若与相交,则,故B错误;
    若,则或,故C错误;
    若,则,故D正确.
    故选:D.
    7. 在中,,,,则此三角形( )
    A. 无解B. 一解
    C. 两解D. 解的个数不确定
    【答案】C
    【解析】
    【分析】利用正弦定理求出的值,再根据所求值及a与b的大小关系即可判断作答.
    【详解】在中,,,,
    由正弦定理得,而为锐角,且,
    则或,
    所以有两解.
    故选:C
    8. 已知是单位向量,且的夹角为,若,则的取值范围为( )
    A. B. C. D.
    【答案】B
    【解析】
    【分析】,结合题意得,结合即得解.
    【详解】,
    因为,所以,
    又,所以.
    故选:B.
    二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.
    9. 下列各式中,值为的是( )
    A B.
    C. D.
    【答案】BC
    【解析】
    【分析】根据正弦函数、余弦函数和正切函数的倍角公式,准确化简,即可求解.
    【详解】由余弦的倍角公式,可得,所以A不正确;
    由正切的倍角公式,可得,所以B正确;由正弦的倍角公式,可得,所以C正确;
    由,所以D不正确.
    故选:BC.
    10. 下列关于复数的说法正确的是( )
    A. 复数是实数的充要条件是
    B. 复数是纯虚数的充要条件是
    C. 若互为共轭复数,则是实数
    D. 若互为共轭复数,则在复平面内它们所对应的点关于y轴对称
    【答案】AC
    【解析】
    【分析】AB选项,根据复数的概念和分类作出判断;CD选项,利用共轭复数的概念,乘法法则和几何意义判断出CD.
    【详解】对于A:当复数是实数时,,若,则为实数,
    故是实数的充要条件是,显然成立,故A正确;
    对于B:若复数是纯虚数,则且,故B错误;
    对于C:若互为共轭复数,设,则,所以是实数,故C正确;
    对于D:若互为共轭复数,设,则,所对应的坐标分别为,,这两点关于x轴对称,故D错误.
    故选:AC.
    11. 已知向量,,则下列说法正确的是( )
    A. 若,则B. 存在,使得
    C. D. 当时,在上的投影向量的坐标为
    【答案】CD
    【解析】
    【分析】根据平面向量共线的坐标公式即可判断A;根据平面线路垂直的坐标表示即可判断B;根据向量的模的坐标计算即可判断C;根据投影向量的计算公式即可判断D.
    【详解】对于A,若,则,解得,故A错误;
    对于B,若,则,
    即,方程无解,
    所以不存在,使得,故B错误;
    对于C,,所以,故C正确;
    对于D,当时,,,
    则在上的投影向量的坐标为,故D正确.
    故选:CD.
    12. 在正方体中,E,F,G分别为BC,,的中点,则( )

    A. 直线与直线AF异面B. 直线与平面平行
    C. 平面截正方体所得的截面是平行四边形D. 点C和点B到平面的距离相等
    【答案】ABD
    【解析】
    【分析】由图可知直线与直线AF异面,利用面面平行的判定定理以及面面平行的性质可证明平面;将平面扩大至与相交于点,即可得截面为等腰梯形,显然平面将线段平分,所以C和B到平面的距离相等.
    【详解】对于选项A,由图可知AF与显然不平行,且不相交,所以AF与异面,选项A正确;
    对于选项B,取的中点为M,连接、,如下图所示:

    易知,且平面,平面,
    所以平面,
    又易知,,因此,
    平面,平面,所以平面;
    ,可得平面平面,
    又平面,从而平面,选项B正确;
    对于选项C,连接,,如下图所示:

    易知,所以平面截正方体所得的截面为等腰梯形,选项C错误;
    对于选项D,平面过的中点E,即平面将线段平分,
    所以C与B到平面的距离相等,选项D正确.
    故选:ABD.
    第Ⅱ卷(90分)
    三、填空题:本题共4小题,每小题5分,共20分.
    13. 若复数,则________.
    【答案】1
    【解析】
    【分析】利用复数的共轭复数的定义和复数的乘法和除法运算求解.
    【详解】解:因为复数,
    所以.
    故答案为:1
    14. 如图,是△OAB的直观图,其中,则的面积是 _______
    【答案】
    【解析】
    【分析】根据斜二测画法的定义,画出平面图形,求得原三角形的直角边,从而面积可得.
    【详解】由题意,利用斜二测画法的定义,画出原图形,

    的面积是.
    故答案为:.
    15. 若,则______.
    【答案】
    【解析】
    【分析】化,从而平方即可.
    【详解】因为,所以,两边平方得,即,.
    故答案为:
    16. 在中,角所对边分别为,且,若的面积为,则边上中线长的最小值为________.
    【答案】
    【解析】
    【分析】先由等式得,再由的面积为得到,
    结合图象和余弦定理可得,利用基本不等式可得最小值.
    【详解】因为,
    由正弦定理得,整理得,即,
    因,所以,得,
    则,
    因为,所以.

    如图,设边上的中点为,在中,由余弦定理,得,又,
    所以
    由得代入上式,
    得,
    当且仅当时取等,所以AC边上中线长的最小值为.
    故答案为:.
    四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.
    17. 已知为锐角,.
    (1)求的值;
    (2)求的值.
    【答案】(1)
    (2)
    【解析】
    【分析】(1)利用同角三角函数的关系和正弦的二倍角公式求解;
    (2)利用诱导公式,同角三角函数的关系以及两角差的余弦公式求解即可.
    【小问1详解】
    因为,
    所以,
    所以.
    【小问2详解】
    因为,
    所以,
    所以.
    18. 已知,,且.
    (1)求与的夹角;
    (2)若,求实数的值.
    【答案】(1)
    (2)
    【解析】
    【分析】(1)根据数量积的运算律得到,再根据数量积的定义求出夹角的余弦值,即可得解;
    (2)依题意可得,根据数量积的运算律得到方程,再求出k的值.
    【小问1详解】
    因为,
    所以.
    设与的夹角为,
    则,又,所以,
    故与的夹角为.
    【小问2详解】
    因为,所以,
    即,即,
    所以,即,解得.
    19. 如图,在长方体中,,,点P为棱上一点.

    (1)试确定点P的位置,使得平面,并说明理由;
    (2)在(1)的条件下,求异面直线与所成角的大小.
    【答案】(1)P为棱的中点,理由见解析
    (2)
    【解析】
    【分析】(1)根据三角形中位线证明线线平行即可求证,
    (2)根据线线平行找到异面直线的所成角,即可结合三角形边角关系求解.
    【小问1详解】
    当P为棱的中点时,平面.
    理由如下:设和交于点O,则O为中点.
    连接,又因为P是的中点,所以.
    又因为平面,平面.
    所以直线平面.
    【小问2详解】
    由(1)知,,所以即为异面直线与所成的角或其补角.
    因为,且,
    所以.
    又,所以.
    故异面直线与所成角的大小为.
    20. 如图,在中,点D为的中点,点E在线段上,与交于点O.

    (1)若,求证:;
    (2)若,,求实数的值.
    【答案】(1)证明见解析
    (2)
    【解析】
    【分析】(1)由点D为的中点可得,再结合已知条件即可证明;
    (2)设,,,利用向量加减法法则可得,,从而可得,即可求解.
    【小问1详解】
    因为点D为的中点,所以,
    因为,,
    两式相加得,
    所以,
    即.
    【小问2详解】
    由,得,
    设,,,
    则,
    又.
    所以,
    因为,不共线,所以,解得.
    21. 如图,某运动员从市出发沿海岸一条笔直的公路以每小时的速度向东进行长跑训练,长跑开始时,在市南偏东方向距市的处有一艘小艇,小艇与海岸距离为,若小艇与运动员同时出发,要追上这位运动员.
    (1)小艇至少以多大的速度行驶才能追上这位运动员?
    (2)求小艇以最小速度行驶时的行驶方向与的夹角.
    【答案】(1)
    (2)
    【解析】
    【分析】(1)设小艇以每小时的速度从处出发,沿方向行驶,小时后与运动员在处相遇,利用余弦定理求出关于的函数,根据二次函数知识可求出的最小值;
    (2)由正弦定理可求出结果.
    【小问1详解】
    如图,设小艇以每小时的速度从处出发,沿方向行驶,小时后与运动员在处相遇,
    在中,,故
    由余弦定理求得,
    则,
    整理得,
    当时,即时,,故.
    即小艇至少以每小时的速度从处出发才能追上运动员.
    【小问2详解】
    当小艇以每小时的速度从处出发,
    经过时间小时追上运动员,
    故,
    又,由正弦定理得,解得,
    故.
    即小艇以最小速度行驶时的行驶方向与的夹角为.
    22. 已知四边形是由与拼接而成,如图所示,,.

    (1)求证:;
    (2)若,,求的长.
    【答案】(1)证明见解析
    (2).
    【解析】
    【分析】(1)求出的范围,利用正弦定理即可证明结论;
    (2)写出与的关系,进而求出的正弦值和余弦值,求出的长,利用余弦定理即可求出的长.
    【小问1详解】
    由题意证明如下,
    中,,
    ∴.
    ∵,
    ∴.
    在中,由正弦定理得, ,
    即,,
    ∴,
    ∴.
    【小问2详解】
    由题意及(1)得
    设,,
    ,,,,,
    则在中,由正弦定理得,,即,
    可得,①
    在中,由正弦定理得,,
    可得,
    可得,②
    联立①②,可得,
    可得,可得,
    在中,由正弦定理得,,可得.
    在中,由余弦定理得,,
    可得,
    可得,解得或(舍),
    ∴的长为.
    相关试卷

    2023-2024学年江苏省盐城市响水县清源高级中学高一下学期3月学情分析考试数学试题: 这是一份2023-2024学年江苏省盐城市响水县清源高级中学高一下学期3月学情分析考试数学试题,文件包含江苏省盐城市响水县清源高级中学高一下学期3月学情分析考试数学试题原卷版docx、江苏省盐城市响水县清源高级中学高一下学期3月学情分析考试数学试题解析版docx等2份试卷配套教学资源,其中试卷共27页, 欢迎下载使用。

    2023-2024学年江苏省响水县清源高级中学高二上学期期中考试数学试题含答案: 这是一份2023-2024学年江苏省响水县清源高级中学高二上学期期中考试数学试题含答案,共16页。试卷主要包含了单选题,多选题,填空题,解答题等内容,欢迎下载使用。

    2022-2023学年江苏省盐城市响水县清源高级中学高一下学期期中数学试题含答案: 这是一份2022-2023学年江苏省盐城市响水县清源高级中学高一下学期期中数学试题含答案,共15页。试卷主要包含了单选题,多选题,填空题,解答题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map