|教案下载
终身会员
搜索
    上传资料 赚现金
    立即下载
    加入资料篮
    沪科版数学八年级下册 多边形内角和-教案01
    沪科版数学八年级下册 多边形内角和-教案02
    沪科版数学八年级下册 多边形内角和-教案03
    还剩5页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    沪科版八年级下册19.1 多边形内角和教案及反思

    展开
    这是一份沪科版八年级下册19.1 多边形内角和教案及反思,共8页。教案主要包含了教学目标,教学重难点,教法,学法,前置作业,教学过程等内容,欢迎下载使用。

    1、知识与技能:
    (1)、使学生理解多边形的定义及其相关概念;
    (2)、主动探索、归纳及掌握多边形内角和定理,并熟练地运用定理解决相关问题;
    (3)、通过多边形内角和定理的推导,感悟“从特殊到一般”的“化归”思想,激发学生学习兴趣,培养学生合作的团队精神.
    2、过程与方法:
    (1)通过量,拼,分,类比,推理等教学活动,探索多边形的内角和公式,感受数学思考过程的条理性,发展推理能力和语言表达能力。
    (2)通过把多边形转化成三角形体会转化思想在几何中的运用,让学生尝试从不同的角度寻求解决问题的方法,同时让学生体会从特殊到一般的认识问题的方法。
    3、情感态度与价值观:
    (1)通过师生共同活动,培养学生创新精神,增强学生对数学的好奇心与求知欲。
    (2)向学生渗透类比、转化的数学思想,并使学生学会与他人合作。
    二、教学重难点
    重点:多边形内角和定理推导及运用。
    难点:将多边形的内角和转化为三角形的内角和,找出它们之间的关系。
    三、教法:启发式、探索式
    四、学法:自主探索、合作交流
    五、前置作业:
    1、做一个不规则四边形学具;2、用尽可能多的方法探究多边形的内角和。
    (目的:一是让学生结合自己已有的生活经验,尝试应用更多的方法来探究多边形的内角和。二是制作一个学具,通过操作学具来触发学生的思考,为重难点的突破打好基础。)
    六、教学过程:
    (一)创设问题情境,导入新课
    课件出示一组生活中的图片

    问题1:看完这组图片,你能抽象出哪些几何图形
    问题2:生活中有如此多几何图形,你对它们有多少了解?
    设置意图:学生能说出发现了三角形、四边形、五边形、六边形、八边形…进而指出什么是多边形,以及多边形的边,内角,顶点,对角线以及凸多边形的概念。老师指出三角形是最简单的多边形,三角形的内角和是180度,那多边形的内角和是多少呢?从而顺利引入新课。
    过渡语:我们知道三角形的内角和等于180度,正方形,长方形的内角和等于360度,那么四边形、五边形、六边形呢?
    今天,老师想和同学们一起走进多边形的家园去揭开多边形的内角和的奥秘。”(板书课题)
    二、合作交流、探究新知
    活动一:探究 “任意四边形的内角和”
    问题1:任意四边形的内角和是多少度?你是怎样得到的?你能找到几种方法?
    活动任务:用用尽可能多的方法探索四边形的内角和
    活动要求:
    1.先自己想,再小组交流。
    2.然后每个小组派两名同学代表展示,并说出方法。
    交流展示:一个小组上台展示探索过程,其他小组补充,并说出不同点。
    组织学生以小组为单位进行展示,结合学生的回答教师适时搭建支架,引导学生发现在测量和剪拼活动中可能会产生误差,通过量或拼的方法得到的内角和可能不是360度,要告诉学生由此感受到作辅助线在解决几何问题中的必要性。
    预设:这个环节学生可能出现“度量” 、“剪拼”、“作辅助线” 等等甚至更多的方法)
    预设学生1、量:任意画一个四边形,量一量它的四个内角,算一算它们的和,
    预设学生2、拼:把准备好的四边形纸卡纸,标上字母,然后把其中的三个内角剪下,拼到最后一个内角上,看看会有什么结果。
    预设学生3、分:把四边形转化成三角形来求
    预设:(方法三学生可能想不到)
    预设问题2:能否把四边形转化成三角形来求呢?怎样进行转化呢?
    活动任务:用用尽可能多的方法把四边形转化成三角形
    活动要求:
    1.先自己画,再小组交流画法。
    2.小组交流之后,汇总小组意见
    分析做法中有什么不同?有不同意见的吗?
    交流展示:组织学生以小组为单位进行展示,结合学生的回答教师适时搭建支架,引导学生发现利用数学转化思想,把求多边形的内角和的问题转化为求若干三角形的内角和,关键是将n边形分割转化为三角形。
    预设学生1:过四边形一个顶点,作四边形的一条对角线,把四边形分成两个三角形,这样进行转化得到结论四边形的内角和为:2×180°= 360°
    预设学生2:可以在四边形的内部找一个点与四个顶点连接,将四边形分成四个三角形这样进行转化得到结论四边形的内角和为:4×180°-360°= 360°
    预设学生3:可以在四边形的一边上找一个点与四个顶点连接,将四边形分成三个三角形这样进行转化得到结论四边形的内角和为:3×180°-180°= 360°
    预设学生4:可以在四边形的外部找一个点与四个顶点连接,将四边形分成四个三角形这样进行转化得到结论四边形的内角和为:3×180°-180°= 360°
    教师在学生展示完后提问:①在“量”、“拼”、“分”这几种方法中,哪种方法操作简单又相对准确?②我们刚才找到了几种不同的辅助线的作法,它们的共同点是什么?③通过比较得出哪种方法更简单?
    A D
    B C
    A
    B
    C
    D
    A
    B
    C
    D
    设置意图:针对不同层次的学生,要适当的引导学生利用作辅助线的方法把多边形转化为三角形,鼓励学生寻找多种分割形式,深入领会转化的本质——将四边形转化为三角形问题来解决。然后让学生表达自己解决问题的方法,体验解决问题策略的多样性。体现处理问题的最优化解题方法。
    活动二:探究 “多边形的内角和”
    问题1:类比四边形的内角和,你能算出五边形、六边形、七边形的内角和吗?
    活动任务:用用尽可能多的方法探索五边形、六边形、七边形的内角和。
    活动要求:自主探究,得出结论
    交流展示:找代表上台展示探索过程,其他不同方法者补充。
    预设学生1:可以利用三角形的内角和。过五边形一个顶点,作五边形的两条对角线,把五边形分成三个三角形,这样进行转化得到结论。
    预设学生2:利用分割的方式,将五边形分割为1个三角形1个四边形;将六边形分割为1个三角形1个五边形或2个四边形;七边形的分割更多。
    设置意图:继续让学生体会多种分割形式,有利于深入领会转化的本质——转化为三角形,也让学生体验数学活动充满探索和解决问题方法的多样性。
    问题2:你能想出六边形和七边形的内角和各是多少吗?
    ①六边形的内角和:4×180°=720 °
    ②七边形的内角和:5×180°=900 °
    问题3:多边形的内角和与多边形的边数有什么关系?
    活动任务:让学生自己归纳总结,得出n边形的内角和公式为(n-2)·180
    活动要求:自主探究,得出结论
    交流展示:找代表上台展示探索过程,其他不同方法者补充。
    难点分解:①从五边形、六边形一个顶点作对角线,可引多少条对角线?可把多边形分成多少个三角形?内角和是多少?②分成的三角形的个数与多边形的边数有什么关系?③n边形从一个顶点可作多少条对角线?可构成多少个三角形?内角和怎样求?为什么?④你能得出求n边形内角和的公式吗?
    规律探究:

    归纳结论:
    n边形的内角和等于(n-2)×180°(n是大于等于3的整数)。
    设置意图:从探索四边形的内角和,到五边形、六边形、七边形乃至n边形,通过增强图形的复杂性,让学生体会由简单到复杂,由特殊到一般的思想方法,再一次经历转化的过程,同时在分组交流的过程中,感受合作的重要性。
    三、应用新知 尝试练习
    分组竞赛、情感升华:
    1、一个多边形每个内角都等于120°,它是( )边形?
    2、一个多边形的内角和等于1800°,它是( )边形?
    3八边形的内角和是( ) 。
    4、一个多边形的内角和是1440°,它是( )边形。
    5、解决问题:例1、如果一个四边形的一组对角互补,那么另一组对角有什么关系
    活动任务:让学生利用并熟练掌握n边形的内角和公式(n-2)·180。
    活动要求:通过做例题和练习来巩固新知识
    交流展示:指名回答,其他不同者补充。
    设置意图:通过新颖的形式激发学生的竞争意识和主动参与活动的热情。学生利用当堂所学的知识解决问题,巩固本节知识。
    四、课堂小结:
    问题:本节课我们探索了多边形的内角和多边形的外角和有关知识接下来我们一起来梳理一下,我们可以从哪些方面来总结我们的收获呢?
    预设1:学生能从知识、探索过程和思想方法三个方面进行总结;
    预设2:学生不能有条理的从三个方面进行分类总结。
    教师引导语预设:当学生不能有条理的从三个方面进行分类总结时,教师可结合现有的板书,引导学生回忆学习过程:探索过程可结合本节课的学习方式进行回忆:发现问题、提出问题、分析问题和解决问题(或具体的知识点学习:“量”、“拼”、“分”,方程的思想、转化的思想等。),体会数学中的类比和转化的数学思想。
    教师补充解释:在知识总结中,教师补充:在多边形的内角和推导方法中,我们一般用多边形的对角线分割多边形
    五、机动练习
    拓展探究:
    用一把剪刀,将一张正方形卡片一个角截去,剩下的卡片是一个几边形?它的内角和是多少?
    活动要求:
    1、小组合作探究,引导学生分析可能的每一种截取情况,根据不同截法得出不同结论。
    2、鼓励学生积极参与思考、大胆尝试、主动探讨、勇于创新。
    设置意图:让学生深刻的感受到合作交流的重要性,体会成功的喜悦。
    六、作业
    1.课本P73 习题 19.1 第1、5题
    2、选做题:用另外两种作辅助线的方法证明多边形内角和定理。
    设置意图:采用分层布置作业,让不同水平的学生得到不同的发展,培养学生的思维灵活性及成就感,从而贯彻因材施教的原则。
    多边形的边数
    3
    4
    5
    6
    7

    n
    分成的三角形个数
    1
    2
    3
    4
    5

    n-2
    多边形的内角和
    180°×1
    180°×2
    180°×3
    180°×4
    180°×5

    (n-2)×180°
    相关教案

    初中数学沪科版八年级下册19.1 多边形内角和教案: 这是一份初中数学沪科版八年级下册<a href="/sx/tb_c70400_t8/?tag_id=27" target="_blank">19.1 多边形内角和教案</a>,共2页。教案主要包含了探索四边形的内角和,探索五边形,探索任意多边形的内角和公式,多边形内角和公式的运用,小结和布置作业等内容,欢迎下载使用。

    初中数学19.1 多边形内角和教案设计: 这是一份初中数学<a href="/sx/tb_c70400_t8/?tag_id=27" target="_blank">19.1 多边形内角和教案设计</a>,共4页。教案主要包含了学生学情分析,教学目标与重难点,教学策略设计,教学过程,板书设计等内容,欢迎下载使用。

    沪科版八年级下册19.1 多边形内角和教学设计: 这是一份沪科版八年级下册<a href="/sx/tb_c70400_t8/?tag_id=27" target="_blank">19.1 多边形内角和教学设计</a>,共7页。

    • 精品推荐
    • 所属专辑
    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        沪科版数学八年级下册 多边形内角和-教案
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map