![【开学摸底考】七年级数学(福建专用)-2023-2024学年初中下学期开学摸底考试卷.zip01](http://img-preview.51jiaoxi.com/2/3/15363286/2-1708334078467/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![【开学摸底考】七年级数学(福建专用)-2023-2024学年初中下学期开学摸底考试卷.zip02](http://img-preview.51jiaoxi.com/2/3/15363286/2-1708334078503/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![【开学摸底考】七年级数学(福建专用)-2023-2024学年初中下学期开学摸底考试卷.zip03](http://img-preview.51jiaoxi.com/2/3/15363286/2-1708334078537/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![【开学摸底考】七年级数学(福建专用)-2023-2024学年初中下学期开学摸底考试卷.zip01](http://img-preview.51jiaoxi.com/2/3/15363286/3-1708334081376/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![【开学摸底考】七年级数学(福建专用)-2023-2024学年初中下学期开学摸底考试卷.zip02](http://img-preview.51jiaoxi.com/2/3/15363286/3-1708334081421/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![【开学摸底考】七年级数学(福建专用)-2023-2024学年初中下学期开学摸底考试卷.zip03](http://img-preview.51jiaoxi.com/2/3/15363286/3-1708334081458/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![【开学摸底考】七年级数学(福建专用)-2023-2024学年初中下学期开学摸底考试卷.zip01](http://img-preview.51jiaoxi.com/2/3/15363286/1-1708334072762/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![【开学摸底考】七年级数学(福建专用)-2023-2024学年初中下学期开学摸底考试卷.zip02](http://img-preview.51jiaoxi.com/2/3/15363286/1-1708334072789/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![【开学摸底考】七年级数学(福建专用)-2023-2024学年初中下学期开学摸底考试卷.zip01](http://img-preview.51jiaoxi.com/2/3/15363286/0-1708334070741/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![【开学摸底考】七年级数学(福建专用)-2023-2024学年初中下学期开学摸底考试卷.zip01](http://img-preview.51jiaoxi.com/2/3/15363286/4-1708334082277/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
- 【开学摸底考】七年级数学(海南专用,范围:华东师大版七上全部)-2023-2024学年初中下学期开学摸底考试卷.zip 试卷 1 次下载
- 【开学摸底考】七年级数学(深圳专用,范围:北师大七上全册)-2023-2024学年初中下学期开学摸底考试卷.zip 试卷 1 次下载
- 【开学摸底考】七年级数学(辽宁专用)-2023-2024学年初中下学期开学摸底考试卷.zip 试卷 2 次下载
- 【开学摸底考】七年级数学(重庆专用,人教七上全册+相交线与平行线)-2023-2024学年初中下学期开学摸底考试卷.zip 试卷 1 次下载
- 七年级开学摸底考(江苏专用)01-2023-2024学年七年级数学下学期开学摸底考试卷.zip 试卷 1 次下载
【开学摸底考】七年级数学(福建专用)-2023-2024学年初中下学期开学摸底考试卷.zip
展开一、选择题:本大题共10小题,每小题2分,共20分.在每小题给出的四个选项中,只有一项是符合题目要求的.
二、填空题:本大题共6小题,每小题2分,共12分
11. 2 3 12.2 13. 4
14. 15.20 16. 2
三、解答题:本大题共68分.解答应写出文字说明、证明过程或演算步骤.
17.【答案】(1)
(2)
【分析】本题主要考查了有理数的加减计算,含乘方的有理数混合计算:
(1)根据有理数的加减计算法则求解即可;
(2)按照先计算乘方,再计算乘法,最后计算减法,有括号先计算括号的运算顺序求解即可.
【详解】(1)解:原式···················································2分
;················································································3分
(2)解:原式
···········································································5分
.··············································································6分
18.【答案】(1)
(2)
【分析】本题主要考查了解一元一次方程,对于(1),先去括号,再移项,合并同类项;
对于(2),去分母,去括号,移项合并同类项,系数化为1即可.
【详解】(1)去括号得:,·············································1分
移项得:,·············································2分
解得:;·············································3分
(2)去分母得:,·············································4分
去括号得:,
移项得:,·············································5分
合并同类项得:,
系数化为1得:.·············································6分
19.【答案】(1)
(2)①2,;②18
【分析】(1)直接去括号进而合并同类项化简即可得出答案;
(2)结合绝对值以及偶次方的性质得出的值代入原式进而得出答案.
此题主要考查了整式的加减,正确合并同类项是解题的关键.
【详解】(1)解:
·············································3分
(2)解:
·············································4分
解得:,
当,时
·············································6分
20.【答案】(1)599
(2)26
(3)工人这一周的工资总额是元
【分析】(1)本题考查了正数和负数的应用,解答本题的关键在于需要明确“+”是比计划多,“-”是比计划少,根据表格信息将前三天产量相加即可解答本题.
(2)本题考查了有理数以及有理数的加减混合运算,解答本题的关键在于从表格中获得产量最多和最少的信息,再进行相减即可求解.
(3)本题考查了有理数以及有理数的加、减、乘混合运算,工资总额包括生产量乘以60元,再加上超额完成的量乘以15元,两部分相加即可计算工资总额.
【详解】(1)解:根据表格前三天产量为:
(辆)
故答案为:.·············································2分
(2)一周的产量分别为:,,,,,,,
则产量最多的一天比产量最少的一天多生产:(辆)
故答案为.·············································4分
(3)超额完成量:
(辆)·············································5分
总工资:(元).
答:该厂工人这一周的工资总额是元.·············································6分
21.【答案】;;;;角平分线的定义;;
【分析】本题主要考查了几何图形中角度的计算,角平分线的定义,先根据角之间的关系得到,进而求出,由角平分线的定义得到,则由角的和差可得.
【详解】解:∵,,
∴,·············································1分
∴,·············································2分
∵为的平分线,
∴(依据:角平分线的定义)·································4分
∴.·············································6分
故答案为:;;;;角平分线的定义;;.
22、【答案】每台型机器一天生产40件产品,每箱装24件产品.
【分析】本题考查了一元一次方程的实际应用.
选择方法一:设每台型机器一天生产件产品,则每台型机器一天生产件产品,根据每箱装产品的件数一样列出等式,即可求解;
选择方法二:设每箱装件产品,根据两种机器每台一天生产产品的数量关系列出等式即可求解.
【详解】解:方法一:设每台型机器一天生产件产品,
依题意列方程,得,·············································2分
解得,·············································4分
所以,·············································6分
答:每台型机器一天生产40件产品,每箱装24件产品; ······························8分
方法二:设每箱装件产品,
依题意列方程,得,·········································2分
解得,··········································4分
所以,··········································6分
答:每台型机器一天生产40件产品,每箱装24件产品.··································8分
23.【答案】(1)见解析
(2)见解析
(3)见解析
(4)两点之间线段最短
【分析】(1)根据题意作图即可;
(2)用圆规在射线上截取一点,使得;
(3)根据两点之间线段最短,连接交于点,即可得到所求;
(4)根据作图的依据写出答案即可.
此题考查了线段、射线、线段的性质等知识,熟练掌握线段、射线的作法与线段的性质是解题的关键.
【详解】(1)解:如图,射线、即为所求;··········································2分
(2)如图所示,点即为所求,··········································4分
(3)如图所示,连接交于点,点即为所求,···································6分
(4)(3)的作图依据是两点之间线段最短,··········································8分
故答案为:两点之间线段最短.
24.【答案】(1)6
(2)存在,
(3),或,或,
【分析】(1)将代入方程,求出的值即可;
(2)解方程可得,再分情况讨论:当时,,当时,无解;
(3)分别求出两个方程的解,由题意得,则有,即可求、的值.
【详解】(1)解:∵是“和合方程”的“和合值”,
∴,
解得:;··········································2分
(2)存在,理由如下:
,
,
当时,,即为“和合值”;··········································4分
当时,无解;··········································6分
(3)的解为,
的解为,··········································7分
两个方程的解相同,
∴,
∴,··········································8分
、是正整数,
,或,或,.··········································10分
【点睛】本题考查一元一次方程的解,熟练掌握一元一次方程的解法,理解“和合方程”的定义,并能准确求解方程是解题的关键.
25.【答案】(1);
(2);理由见解析;
(3)
【分析】(1)根据图形可知,继而根据,即可求解;
(2)根据图形得出,计算,即可得出结论;
(3)分两种情况讨论,①当时,射线与重合,射线与互为反向延长线,②当时,如图4,射线、在的外部,结合图形分析即可求解.
【详解】(1)如图1,,
在内部,
,,
,
,
;··········································2分
(2);理由如下:如图2,
,
射线、分别在内、外部,
,
,
,
;··········································6分
(3)①当时,射线与重合,射线与互为反向延长线,
则,,如图3,
,,
,
,
;··········································9分
②当时,如图4,射线、在的外部,如图4,
则,,
,,
,
,
,
.··········································12分
综合①②得.
【点睛】本题考查了结合图形中角度的计算,数形结合是解题的关键.1
2
3
4
5
6
7
8
9
10
C
D
C
B
B
C
D
D
A
C
【开学摸底考】九年级数学(广西专用)-2023-2024学年初中下学期开学摸底考试卷.zip: 这是一份【开学摸底考】九年级数学(广西专用)-2023-2024学年初中下学期开学摸底考试卷.zip,文件包含九年级数学开学摸底考广西专用解析版docx、九年级数学开学摸底考广西专用答案及评分标准docx、九年级数学开学摸底考广西专用考试版docx、九年级数学开学摸底考广西专用答题卡docx、九年级数学开学摸底考广西专用答题卡pdf等5份试卷配套教学资源,其中试卷共33页, 欢迎下载使用。
【开学摸底考】七年级数学(辽宁专用)-2023-2024学年初中下学期开学摸底考试卷.zip: 这是一份【开学摸底考】七年级数学(辽宁专用)-2023-2024学年初中下学期开学摸底考试卷.zip,文件包含七年级数学开学摸底考辽宁专用解析版docx、七年级数学开学摸底考辽宁专用考试版docx、七年级数学开学摸底考辽宁专用答案及评分标准docx、七年级数学开学摸底考辽宁专用答题卡docx、七年级数学开学摸底考辽宁专用答题卡pdf等5份试卷配套教学资源,其中试卷共26页, 欢迎下载使用。
【开学摸底考】七年级数学(沪科版,安徽专用)-2023-2024学年初中下学期开学摸底考试卷.zip: 这是一份【开学摸底考】七年级数学(沪科版,安徽专用)-2023-2024学年初中下学期开学摸底考试卷.zip,文件包含七年级数学开学摸底考沪科版安徽专用解析版docx、七年级数学开学摸底考沪科版安徽专用答案及评分标准docx、七年级数学开学摸底考沪科版安徽专用考试版docx、七年级数学开学摸底考沪科版安徽专用答题卡docx、七年级数学开学摸底考沪科版安徽专用答题卡pdf等5份试卷配套教学资源,其中试卷共32页, 欢迎下载使用。