黑龙江省北安市第四中学2023-2024学年九年级数学第一学期期末达标检测模拟试题含答案
展开学校_______ 年级_______ 姓名_______
注意事项:
1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(每题4分,共48分)
1.如图所示,在平面直角坐标系中,等腰直角三角形ABC的顶点A、B分别在x轴、y轴的正半轴上,∠ABC=90°,CA⊥x轴于点A,点C在函数y=(x>0)的图象上,若OA=1,则k的值为( )
A.4B.2C.2D.
2.下列各式中,均不为,和成反比例关系的是( )
A.B.C.D.
3.关于抛物线y=x2﹣6x+9,下列说法错误的是( )
A.开口向上B.顶点在x轴上
C.对称轴是x=3D.x>3时,y随x增大而减小
4.下列条件中,能判断四边形是菱形的是( )
A.对角线互相垂直且相等的四边形
B.对角线互相垂直的四边形
C.对角线相等的平行四边形
D.对角线互相平分且垂直的四边形
5.如图,与正六边形的边分别交于点,点为劣弧的中点.若.则点到的距离是( )
A.B.C.D.
6.如图是由几个相同的小正方体所搭几何体的俯视图,小正方形中的数字表示在该位置的小正方体的个数,这个几何体的主视图是( )
A.B.C.D.
7.已知:抛物线y1=x2+2x-3与x轴交于A、B两点(点A在点B的左侧),抛物线y2=x2-2ax-1(a>0)与x轴交于C、D两点(点C在点D的左侧),在使y1>0且y2≤0的x的取值范围内恰好只有一个整数时,a的取值范围是( )
A.08.如图,在中,点P在边AB上,则在下列四个条件中::;;;,能满足与相似的条件是( )
A.B.C.D.
9.抛物线y=(x+2)2﹣2的顶点坐标是( )
A.(2,﹣2)B.(2,2)C.(﹣2,2)D.(﹣2,﹣2)
10.二次函数的图像如图所示,下面结论:①;②;③函数的最小值为;④当时,;⑤当时,(、分别是、对应的函数值).正确的个数为( )
A.B.C.D.
11.如图的中,,且为上一点.今打算在上找一点,在上找一点,使得与全等,以下是甲、乙两人的作法:
(甲)连接,作的中垂线分别交、于点、点,则、两点即为所求
(乙)过作与平行的直线交于点,过作与平行的直线交于点,则、两点即为所求
对于甲、乙两人的作法,下列判断何者正确?( )
A.两人皆正确B.两人皆错误
C.甲正确,乙错误D.甲错误,乙正确
12.已知y=(m+2)x|m|+2是关于x的二次函数,那么m的值为( )
A.﹣2B.2C.±2D.0
二、填空题(每题4分,共24分)
13.如图,在平面直角坐标系中,点,点,作第一个正方形且点在上,点在上,点在上;作第二个正方形且点在上,点在上,点在上…,如此下去,其中纵坐标为______,点的纵坐标为______.
14.如图,在平行四边形中,点、在双曲线上,点的坐标是,点在坐标轴上,则点的坐标是___________.
15.若正六边形的内切圆半径为2,则其外接圆半径为__________.
16.已知实数x,y满足,则x+y的最大值为_______.
17.甲、乙两人在直线跑道上同起点、同终点、同方向匀速跑步560米,先到终点的人原地休息.已知甲先出发2秒.在跑步过程中,甲、乙两人的距离y(米)与乙出发的时间t(秒)之间的关系如图所示,则a=______.
18.菱形ABCD中,若周长是20cm,对角线AC=6cm,则对角线BD=_____cm.
三、解答题(共78分)
19.(8分)如图,已知抛物线与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C.
(1)直接写出点A、B、C的坐标;
(2)在抛物线的对称轴上存在一点P,使得PA+PC的值最小,求此时点P的坐标;
(3)点D是第一象限内抛物线上的一个动点(与点C、B不重合)过点D作DF⊥x轴于点F,交直线BC于点E,连接BD,直线BC把△BDF的面积分成两部分,使,请求出点D的坐标;
(4)若M为抛物线对称轴上一动点,使得△MBC为直角三角形,请直接写出点M的坐标.
20.(8分)在平面直角坐标系中,已知P(,),R(,)两点,且,,若过点P作轴的平行线,过点R作轴的平行线,两平行线交于一点S,连接PR,则称△PRS为点P,R,S的“坐标轴三角形”.若过点R作轴的平行线,过点P作轴的平行线,两平行线交于一点,连接PR,则称△RP为点R,P,的“坐标轴三角形”.右图为点P,R,S的“坐标轴三角形”的示意图.
(1)已知点A(0,4),点B(3,0),若△ABC是点A,B,C的“坐标轴三角形”,则点C的坐标为 ;
(2)已知点D(2,1),点E(e,4),若点D,E,F的“坐标轴三角形”的面积为3,求e的值.
(3)若的半径为,点M(,4),若在上存在一点N,使得点N,M,G的“坐标轴三角形”为等腰三角形,求的取值范围.
21.(8分)如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,D、E分别是边BC、AC上的两个动点,且DE=4,P是DE的中点,连接PA,PB,则PA+PB的最小值为_____.
22.(10分)如图,在平面直角坐标系xOy中,点A(,3),B(,2),C(0,).
(1)以y轴为对称轴,把△ABC沿y轴翻折,画出翻折后的△;
(2)在(1)的基础上,
①以点C为旋转中心,把△顺时针旋转90°,画出旋转后的△;
②点的坐标为 ,在旋转过程中点经过的路径的长度为_____(结果保留π).
23.(10分)已知:在平面直角坐标系中,的三个顶点的坐标分别为,,.
(1)画出关于原点成中心对称的,并写出点的坐标;
(2)画出将绕点按顺时针旋转所得的.
24.(10分)近年来,各地“广场舞”噪音干扰的问题倍受关注.相关人员对本地区15~65岁年龄段的市民进行了随机调查,并制作了如下相应的统计图.市民对“广场舞”噪音干扰的态度有以下五种:A.没影响 B.影响不大 C.有影响,建议做无声运动 D.影响很大,建议取缔 E.不关心这个问题
根据以上信息解答下列问题:
(1)根据统计图填空: ,A区域所对应的扇形圆心角为 度;
(2)在此次调查中,“不关心这个问题”的有25人,请问一共调查了多少人?
(3)将条形统计图补充完整;
(4)若本地共有14万市民,依据此次调查结果估计本地市民中会有多少人给出建议?
25.(12分)如图,已知抛物线经过点和点,与轴交于点.
(1)求此抛物线的解析式;
(2)若点是直线下方的抛物线上一动点(不点,重合),过点作轴的平行线交直线于点,设点的横坐标为.
①用含的代数式表示线段的长;
②连接,,求的面积最大时点的坐标;
(3)设抛物线的对称轴与交于点,点是抛物线的对称轴上一点,为轴上一点,是否存在这样的点和点,使得以点、、、为顶点的四边形是菱形?如果存在,请直接写出点的坐标;如果不存在,请说明理由.
26.(12分)在边长为1个单位长度的正方形网格中,建立如图所示的平面直角坐标系,的顶点都在格点上,请解答下列问题:
(1)作出向左平移4个单位长度后得到的,并写出点的坐标;
(2)作出关于原点O对称的,并写出点的坐标;
(3)已知关于直线L对称的的顶点的坐标为(-4,-2),请直接写出直线L的函数解析式.
参考答案
一、选择题(每题4分,共48分)
1、C
2、B
3、D
4、D
5、C
6、A
7、C
8、D
9、D
10、C
11、A
12、B
二、填空题(每题4分,共24分)
13、
14、
15、
16、4
17、1
18、1
三、解答题(共78分)
19、(1)点A、B、C的坐标分别为:(−1,0)、(5,0)、(0,−5);(2)P(2,3);(3)D(,);(4)M的坐标为:(2,7)或(2,−3)或(2,6)或(2,−1).
20、(1)(3,4);(2)或;(3)m的取值范围是或.
21、
22、(1)画图见解析;(2)①画图见解析;② (4,-2),.
23、(1)如图所示,即为所求,见解析,点的坐标为;(2)如图所示,即为所求.见解析.
24、(1)32,1;(2)500人;(3)补图见解析;(4)5.88万人.
25、(1)y=x2﹣4x+1;(2)①用含m的代数式表示线段PD的长为﹣m2+1m;②△PBC的面积最大时点P的坐标为(,﹣);(1)存在这样的点M和点N,使得以点C、E、M、N为顶点的四边形是菱形.点M的坐标为M1(2,1),M2(2,1﹣2),M1(2,1+2).
26、(1)图详见解析,C1(-1,2); (2)图详见解析,C2(-3,-2);(3)
2023-2024学年黑龙江北安市数学九年级第一学期期末复习检测模拟试题含答案: 这是一份2023-2024学年黑龙江北安市数学九年级第一学期期末复习检测模拟试题含答案,共8页。试卷主要包含了按下面的程序计算,一元二次方程的正根的个数是等内容,欢迎下载使用。
2023-2024学年石狮七中学九年级数学第一学期期末达标检测模拟试题含答案: 这是一份2023-2024学年石狮七中学九年级数学第一学期期末达标检测模拟试题含答案,共8页。试卷主要包含了如图,四边形内接于,若,则,如图,△OAB∽△OCD,OA等内容,欢迎下载使用。
2023-2024学年山西运城东康中学九年级数学第一学期期末达标检测模拟试题含答案: 这是一份2023-2024学年山西运城东康中学九年级数学第一学期期末达标检测模拟试题含答案,共8页。