2024-2025学年黑龙江省哈尔滨市风华中学九年级数学第一学期开学达标检测模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图所示的3×3正方形网格中,∠1+∠2+∠3+∠4+∠5等于( )
A.135°B.180°C.225°D.270°
2、(4分)若分式在实数范围内有意义,则实数的取值范围是( )
A.B.C.D.
3、(4分)下列事件:①上海明天是晴天,②铅球浮在水面上,③平面中,多边形的外角和都等于360度,属于确定事件的个数有( )
A.0个B.1个C.2个D.3个
4、(4分)若分式 有意义,则x的取值范围是
A.x>1B.x<1C.x≠1D.x≠0
5、(4分)二次根式中字母 x 的取值范围是( )
A.x≠﹣3B.x≥﹣3C.x>﹣3D.全体实数
6、(4分)中国华为麒麟985处理器是采用7纳米制程工艺的手机芯片,在指甲盖大小的尺寸上塞进了120亿个晶体管,是世界上最先进的具有人工智能的手机处理器,将120亿个用科学记数法表示为( )
A.个B.个C.个D.个
7、(4分)点P(1,a),Q(﹣2,b)是一次函数y=kx+1(k<0)图象上两点,则a与b的大小关系是( )
A.a>bB.a=bC.a<bD.不能确定
8、(4分)若一个正多边形的每一个外角都等于40°,则它是( ).
A.正九边形B.正十边形C.正十一边形D.正十二边形
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)比较大小:__________.(用不等号连接)
10、(4分)如图,函数y=3x和y=ax+4的图象相交于点A(1,3),则不等式3x
则这30名学生的身高的众数是______.
12、(4分)如图,点A是反比例函数y=(x>0)的图象上任意一点,AB∥x轴交反比例函数y=(k≠0)的图象于点B,以AB为边作平行四边形ABCD,点C,点D在x轴上.若S▱ABCD=5,则k=____.
13、(4分)已知一组数据有40个,把它分成五组,第一组、第二组、第四组、第五组的频数分别是10,8,7,6,第三组频数是________.
三、解答题(本大题共5个小题,共48分)
14、(12分)某超市销售一种饮料,平均每天可售出100箱,每箱利润120元.为了多销售,增加利润,超市准备适当降价。据测算,若每箱降价2元,每天可多售出4箱.
(1)如果要使每天销售饮料获利14000元,则每箱应降价多少元?
(2)每天销售饮料获利能达到15000元吗?若能,则每箱应降价多少元?若不能,请说明理由.
15、(8分)如图所示,在边长为1个单位长度的小正方形组成的网格中,的顶点A、B、C在格点(网格线的交点)上.
(1)将绕点B逆时针旋转,得到,画出;
(2)以点A为位似中心放大,得到,使放大前后的三角形面积之比为1:4,请你在网格内画出.
16、(8分)某超市出售甲、乙、丙三种糖果,其售价分别为5元/千克,12元/千克,20元/千克,为满足客多样化需求,超市打算把糖果混合成杂拌糖出售,如果按照如图所示的扇形统计图中甲、乙、丙三种糖果的比例混合,这种新混合的杂排糖的售价应该为多少元/千克?
17、(10分)下图是某大桥的斜拉索部分效果图,为了测得斜拉索顶端距离海平面的高度,先测出斜拉索底端到桥塔的距离(的长)约为米,又在点测得点的仰角为 ,测得点的俯角为,求斜拉索顶端点到海平面点的距离(的长). ()
18、(10分)如图,▱ABCD中,点E在BC延长线上,EC=BC,连接DE,AC,AC⊥AD于点A、
(1)求证:四边形ACED是矩形;
(2)连接BD,交AC于点F.若AC=2AD,猜想∠E与∠BDE的数量关系,并证明你的猜想.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)当__________时,分式的值等于零.
20、(4分)甲、乙两人各进行10次射击比赛,平均成绩均为9环,方差分别是: ,则射击成绩较稳定的是________(选填“甲”或“乙”).
21、(4分)若a+b=4,a﹣b=1,则(a+2)2﹣(b﹣2)2的值为_____.
22、(4分)在△ABC中,AC=BC=,AB=2,则△ABC中的最小角是_____.
23、(4分)一元二次方程有实数根,则的取值范围为____.
二、解答题(本大题共3个小题,共30分)
24、(8分)因式分解是数学解题的一种重要工具,掌握不同因式分解的方法对数学解题有着重要的意义.我们常见的因式分解方法有:提公因式法、公式法、分组分解法、十字相乘法等.在此,介绍一种方法叫“试根法”.例:,当时,整式的值为0,所以,多项式有因式,设
,展开后可得,所以,根据上述引例,请你分解因式:
(1);
(2).
25、(10分)先化简,然后在0、±1、±2这5个数中选取一个作为x的值代入求值.
26、(12分)在平面直角坐标系xOy中,点P和图形W的“中点形”的定义如下:对于图形W上的任意一点Q,连结PQ,取PQ的中点,由所以这些中点所组成的图形,叫做点P和图形W的“中点形”.
已知C(-2,2),D(1,2),E(1,0),F(-2,0).
(1)若点O和线段CD的“中点形”为图形G,则在点,,中,在图形G上的点是 ;
(2)已知点A(2,0),请通过画图说明点A和四边形CDEF的“中点形”是否为四边形?若是,写出四边形各顶点的坐标,若不是,说明理由;
(3)点B为直线y=2x上一点,记点B和四边形CDEF的中点形为图形M,若图形M与四边形CDEF有公共点,直接写出点B的横坐标b的取值范围.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
首先判定△ABC≌△AEF,△ABD≌△AEH,可得∠5=∠BCA,∠4=∠BDA,然后可得∠1+∠5=∠1+∠BCA=90°,∠2+∠4=90°,然后即可求出答案.
【详解】
在△ABC和△AEF中,
∴△ABC≌△AEF(SAS)
∴∠5=∠BCA
∴∠1+∠5=∠1+∠BCA=90°
在△ABD和△AEF中
∴△ABD≌△AEH(SAS)
∴∠4=∠BDA
∴∠2+∠4=∠2+∠BDA=90°
∵∠3=45°
∴∠1+∠2+∠3+∠4+∠5=90°+90°+45°=225°
故答案选C.
本题考查的是全等三角形的判定与性质,能够根据全等将所求角转化是解题的关键.
2、D
【解析】
根据分式有意义的条件即可求出答案.
【详解】
解:由分式有意义的条件可知:,
,
故选:.
本题考查分式有意义的条件,解题的关键是熟练运用分式有意义的条件,本题属于基础题型.
3、C
【解析】
确定事件就是一定发生或一定不发生的事件,根据定义即可作出判断
【详解】
解:①上海明天是晴天,是随机事件;
②铅球浮在水面上,是不可能事件,属于确定事件;
③平面中,多边形的外角和都等于360度,是必然事件,属于确定事件;
故选:C.
此题考查随机事件,解题关键在于根据定义进行判断
4、C
【解析】
分式分母不为0,所以,解得.
故选:C.
5、D
【解析】
根据任何实数的平方是非负数,可得答案.
【详解】
二次根式中字母x的取值范围是x+3任意实数,
x是任意实数.
故选:D.
此题考查二次根式有意义的条件,解题关键在于掌握其定义.
6、C
【解析】
科学记数法的表示形式为的形式,其中,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值时,n是正数;当原数的绝对值时,n是负数.
【详解】
120亿个用科学记数法可表示为:个.
故选C.
此题考查科学记数法的表示方法.科学记数法的表示形式为的形式,其中,为整数,表示时关键要正确确定的值以及的值.
7、C
【解析】
先把点P(1,a),Q(-2,b)分别代入一次函数解析式得到k+1=a,-2k+1=b,然后根据k<0得到k<-2k,则即可得到a、b的大小关系.
【详解】
把点P(1,a),Q(-2,b)分别代入y=kx+1得k+1=a,-2k+1=b,
∵k<0,
∴a<b.
故选C.
本题考查了一次函数图象上点的坐标特征:一次函数y=kx+b(k≠0)的图象上的点满足其解析式.
8、A
【解析】
根据多边形的外角和是360度即可求得外角的个数,即多边形的边数.
【详解】
解:∵360÷40=1,
∴这个正多边形的边数是1.
故选:A.
本题考查了多边形内角与外角,根据外角和的大小与多边形的边数无关,由外角和求正多边形的边数,是常见的题目,需要熟练掌握.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、<
【解析】
先运用二次根式的性质把根号外的数移到根号内,即可解答
【详解】
∵=
∴<
故答案为:<
此题考查实数大小比较,难度不大
10、
【解析】
由题意结合图象可以知道,当x=1时,两个函数的函数值是相等的,再根据函数的增减性可以判断出不等式的解集.
【详解】
解:两个条直线的交点坐标为A(1,3),
当x<1时,
直线y=ax+4在直线y=3x的上方,
当x>1时,
直线y=ax+4在直线y=3x的下方,
故不等式3x
本题主要考查正比例函数、一次函数和一元一次不等式的知识点,本题是借助一次函数的图象解一元一次不等式,两个图象的“交点”是两个函数值大小关系的“分界点”,在“分界点”处函数值的大小发生了改变.
11、1.1.
【解析】
根据众数的定义,即出现次数最多的
【详解】
在这一组数据中1.1出现了8次,次数最多,故众数是1.1.
故答案为1.1.
此题考查众数,难度不大
12、-1
【解析】
设点A(x,),表示点B的坐标,然后求出AB的长,再根据平行四边形的面积公式列式计算即可得解.
【详解】
设点A(x,),则B(,),
∴AB=x-,
则(x-)•=5,
k=-1.
故答案为:-1.
本题考查了反比例函数系数的几何意义,用点A,B的横坐标之差表示出AB的长度是解题的关键.
13、9
【解析】
用总频数减去各组已知频数可得.
【详解】
第三组频数是40-10-8-7-6=9
故答案为:9
考核知识点:频数.理解频数的定义是关键.数据的个数叫频数.
三、解答题(本大题共5个小题,共48分)
14、(1)每箱应降价50元,可使每天销售饮料获利14000元.(2)获利不能达到15000元.
【解析】
(1)此题利用的数量关系:销售每箱饮料的利润×销售总箱数=销售总利润,由此列方程解答即可;
(2)根据题意列出方程,然后用根的判别式去验证.
【详解】
(1)要使每天销售饮料获利14000元,每箱应降价x元,依据题意列方程得,
(120−x)(100+2x)=14000,
整理得x2−70x+1000=0,
解得x1=20,x2=50;
∵为了多销售,增加利润,
∴x=50
答:每箱应降价50元,可使每天销售饮料获利14000元.
(2)由题意得:(120−x)(100+2x)=1500,
整理得x2−70x+1500=0,
∵△=702−4×1500<0
∴方程无解,
∴获利不能达到15000元.
考核知识点:一元二次方程的应用.理解题意,列出方程是关键.
15、 (1)见解析;(2)见解析
【解析】
(1)分别作出点A、C绕点B逆时针旋转90°所得对应点,再顺次连接即可得;
(2)分别作出点B、C变换后的对应点,再顺次连接即可得.
【详解】
(1)如图所示,△A1BC1即为所求.
(2)如图所示,△AB2C2即为所求.
考查作图-旋转变换、位似变换,解题的关键是掌握旋转变换和位似变换的定义与性质.
16、这种新混合的杂排糖的售价应该为10.1元/千克.
【解析】
由扇形统计图中可以得到甲、乙、丙三种糖果所占的比例,然后根据加权平均数的计算方法求出结果即可.
【详解】
丙对应的百分比为1-50%-30%=20%
∴这种新混合物的杂拌糖的售价应该为5×50%+12×30%+20×20%=10.1(元/千克)
答:这种新混合的杂排糖的售价应该为10.1元/千克.
考查扇形统计图的特征、加权平均数的计算方法,明确和理解加权平均数中“权”是正确解答的前提.
17、151米
【解析】
先解直角三角形ADC得出AD的长,然后在直角三角形BDC中求得BD的长,两者相加即可求得AB的长.
【详解】
在中, ,
.
在中,
米.
本题考查了解直角三角形的应用-仰角俯角问题、坡度坡角问题,难度适中,通过直角三角形,利用三角函数求解是解题的关键.
18、(1)证明见解析(2)∠E=2∠BDE
【解析】
(1)由四边形ABCD是平行四边形,EC=BC,易证得四边形ACED是平行四边形,又由AC⊥AD,即可证得四边形ACED是矩形;
(2)根据矩形的性质得∠E=∠DAC=90°,可证得DA=AF,由等腰三角形的性质可得∠ADF=45°,则∠BDE=45°,可得出∠E=2∠BDE.
【详解】
(1)证明:因为ABCD是平行边形,
∴AD=BC,AD∥BC,
∵BC=CE,点E在BC的延长线上,
∴AD=EC,AD∥EC,
∴四边形ACED为平行四边形,
∵AC⊥AD,
∴平行四边形ACED为矩形
(2)∠E=2∠BDE
理由:∵平行四边形ABCD中,AC=2AF,
又∵AC=2AD,
∴AD=AF,
∴∠ADF=∠AFD,
∵AC∥ED,
∴∠BDE=∠BFC,
∵∠BFC=∠AFD,
∴∠BDE=∠ADF=45°,
∴∠E=2∠BDE
此题考查了矩形的判定与性质.熟悉矩形的判定和性质是关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、-2
【解析】
令分子为0,分母不为0即可求解.
【详解】
依题意得x2-4=0,x-2≠0,解得x=-2,
故填:-2.
此题主要考查分式的值,解题的关键是熟知分式的性质.
20、甲
【解析】
根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.
【详解】
解:因为甲的方差最小,所以射击成绩较稳定的是甲;
故答案为:甲
本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.
21、1
【解析】
先利用平方差公式:化简所求式子,再将已知式子的值代入求解即可.
【详解】
将代入得:原式
故答案为:1.
本题考查了利用平方差公式进行化简求值,熟记公式是解题关键.另一个重要公式是完全平方公式:,这是常考知识点,需重点掌握.
22、45°.
【解析】
根据勾股定理得到逆定理得到△ABC是等腰直角三角形,根据等腰直角三角形的性质即可的结论.
【详解】
解:∵AC=BC=,AB=2,
∴AC2+BC2=2+2=4=22=AB2,
∴△ABC是等腰直角三角形,
∴△ABC中的最小角是45°;
故答案为:45°.
本题考查了等腰直角三角形,勾股定理的逆定理,熟练掌握勾股定理的逆定理是解题的关键.
23、
【解析】
根据根的判别式求解即可.
【详解】
∵一元二次方程有实数根
∴
解得
故答案为:.
本题考查了一元二次方程根的问题,掌握根的判别式是解题的关键.
二、解答题(本大题共3个小题,共30分)
24、(1);(2)
【解析】
(1)先找出x=1时,整式的值为0,进而找出一个因式,再将多项式分解因式,即可得出结论;
(2)先找出x=-1时,整式的值为0,进而找出一个因式,再将多项式设成分解因式的形式,即可得出结论.
【详解】
(1)当x=1时,整式的值为0,所以,多项式有因式(x-1),
于是2x2-1x+1=(x-1)(2x-1);
(2)当x=-1时,整式的值为0,
∴多项式x1+1x2+1x+1中有因式(x+1),
于是可设x1+1x2+1x+1=(x+1)(x2+mx+1)=x1+(m+1)x2+(1+m)x+1,
∴m+1=1,,
∴m=2,
∴x1+1x2+1x+1=(x+1)(x2+2x+1)=(x+1)1.
此题考查了用“试根法”分解因式,考查了学生的阅读理解能力以及知识的迁移能力.
25、,-
【解析】
原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把x的值代入计算即可求出值.
【详解】
解:原式=,
当x=0时,原式=-.
此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.
26、(1),;(1)点A和四边形CDEF的“中点形”是四边形,各顶点的坐标为:(0,0)、(0,1)、(,0)、(,1);(3)-1≤b≤0或 1≤b≤1.
【解析】
(1)依照题意画出图形,观察图形可知点O和线段CD的中间点所组成的图形是线段C′D′,根据点A,C,D的坐标,利用中点坐标公式可求出点C′,D′的坐标,进而可得出结论;
(1)画出图形,观察图形可得出结论;
(3)利用一次函数图象上点的坐标特征可得出点B的坐标为(n,1n),依照题意画出图形,观察图形可知:点B和四边形CDEF的中间点只能在边EF和DE上,当点B和四边形CDEF的中间点在边EF上时,利用四边形CDEF的纵坐标的范围,可得出关于n的一元一次不等式组,解之即可得出n的取值范围;当点B和四边形CDEF的中间点在边DE上时,由四边形CDEF的横、纵坐标的范围,可得出关于n的一元一次不等式组,解之即可得出n的取值范围.综上,此题得解.
【详解】
解:(1)如图:点O和线段CD的中间点所组成的图形G是线段C′D′,
由题意可知:点C′为线段OC的中点,点D′为线段OD的中点.
∵点C的坐标为(-1,1),点D的坐标为(1,1),
∴点C′的坐标为(-1,1),点D′的坐标为( ,1),
∴点O和线段CD的中间点所组成的图形G即线段C′D′的纵坐标是1,横坐标-1≤x≤,
∴点,,中,在图形G上的点是,;
(1)点A和四边形CDEF的“中点形”是四边形.
各顶点的坐标为:(0,0)、(0,1)、(,0)、(,1).
(3)∵点B的横坐标为b,
∴点B的坐标为(b,1b).
当点B和四边形CDEF的中间点在边EF上时,有 ,
解得:-1≤b≤0;
当点B和四边形CDEF的中间点在边DE上时,有 ,
解得:1≤b≤1,
综上所述:点B的横坐标b的取值范围为-1≤b≤0 或 1≤b≤1.
故答案为(1),;(1)点A和四边形CDEF的“中点形”是四边形,各顶点的坐标为:(0,0)、(0,1)、(,0)、(,1);(3)-1≤b≤0或 1≤b≤1.
本题考查中点坐标公式、一次函数图象上点的坐标特征以及解一元一次不等式组,解题的关键是:(1)通过画图找出点O和线段CD的中间点所组成的图形是线段C′D′;(1)画出图形,观察图形;(3)分点B和四边形CDEF的中间点在边EF上及点B和四边形CDEF的中间点在边DE上两种情况,找出关于b的一元一次不等式组.
题号
一
二
三
四
五
总分
得分
身高(m)
1.45
1.48
1.50
1.53
1.56
1.60
人数
2
5
6
8
5
4
2024-2025学年黑龙江省哈尔滨市数学九年级第一学期开学检测模拟试题【含答案】: 这是一份2024-2025学年黑龙江省哈尔滨市数学九年级第一学期开学检测模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年黑龙江省哈尔滨市南岗区萧红中学九年级数学第一学期开学教学质量检测模拟试题【含答案】: 这是一份2024-2025学年黑龙江省哈尔滨市南岗区萧红中学九年级数学第一学期开学教学质量检测模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年黑龙江省哈尔滨市哈尔滨风华中学数学九年级第一学期开学达标检测试题【含答案】: 这是一份2024-2025学年黑龙江省哈尔滨市哈尔滨风华中学数学九年级第一学期开学达标检测试题【含答案】,共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。