山东省菏泽定陶县联考2023-2024学年数学九年级第一学期期末复习检测模拟试题含答案
展开学校_______ 年级_______ 姓名_______
注意事项:
1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(每题4分,共48分)
1.关于抛物线,下列结论中正确的是( )
A.对称轴为直线
B.当时,随的增大而减小
C.与轴没有交点
D.与轴交于点
2.若a是方程的一个解,则的值为
A.3B.C.9D.
3.如图是二次函数y=ax2+bx+c(a≠0)的图象的一部分,给出下列命题:
①a+b+c=0;
②b>2a;
③ax2+bx+c=0的两根分别为﹣3和1;
④c=﹣3a,
其中正确的命题是( )
A.①②B.②③C.①③D.①③④
4.下列图形中,既是轴对称图形,又是中心对称图形的是( )
A.等腰梯形B.矩形C.正三角形D.平行四边形
5.已知函数y=(k-1)x2-4x+4的图象与x轴只有一个交点,则k的取值范围是( )
A.k≤2且k≠1B.k<2且k≠1
C.k=2D.k=2或1
6.点是反比例函数的图象上的一点,则( )
A.B.12C.D.1
7.如图,点A、B、C在⊙O上,CO的延长线交AB于点D,∠A=50°,∠B=30°,∠ACD的度数为( )
A.10°B.15°C.20°D.30°
8.如图,矩形ABCD中,AB=8,BC=1.点E在边AB上,点F在边CD上,点G、H在对角线AC上.若四边形EGFH是菱形,则AE的长是( )
A.2B.3C.5D.6
9.现有两个不透明的袋子,一个装有2个红球、1个白球,另一个装有1个黄球、2个红球,这些球除颜色外完全相同从两个袋子中各随机摸出1个球,摸出的两个球颜色相同的概率是( )
A.B.C.D.
10.如图,已知的周长等于 ,则它的内接正六边形ABCDEF的面积是( )
A.B.C.D.
11.如果双曲线y=经过点(3、﹣4),则它也经过点( )
A.(4、3)B.(﹣3、4)C.(﹣3、﹣4)D.(2、6)
12.在平面直角坐标系中,以原点为位似中心,位似比为:,将缩小,若点坐标,,则点对应点坐标为( )
A.,B.C.或,D.,或,
二、填空题(每题4分,共24分)
13.如图,在反比例函数的图象上有点它们的横坐标依次为2,4,6,8,10,分别过这些点作轴与轴的垂线,图中所构成的阴影部分的面积从左到右依次为则点的坐标为________,阴影部分的面积________.
14.如图,在矩形中对角线与相交于点,,垂足为点,且,则的长为___________.
15.如图,在平面直角坐标系中,反比例函数(x>0)与正比例函数y=kx、 (k>1)的图象分别交于点A、B,若∠AOB=45°,则△AOB的面积是________.
16.在直角坐标平面内有一点A(3,4),点A与原点O的连线与x轴的正半轴夹角为α,那么角α的余弦值是_____.
17.若点与关于原点对称,则的值是___________.
18.已知m为一元二次方程x²-3x-2020=0的一个根,则代数式2m²-6m+2的值为___________
三、解答题(共78分)
19.(8分)已知抛物线y=kx2+(1﹣2k)x+1﹣3k与x轴有两个不同的交点A、B.
(1)求k的取值范围;
(2)证明该抛物线一定经过非坐标轴上的一点M,并求出点M的坐标;
(3)当<k≤8时,由(2)求出的点M和点A,B构成的△ABM的面积是否有最值?若有,求出该最值及相对应的k值.
20.(8分)如图,矩形ABCD中,AD=5,AB=7,点E为DC上一个动点,把△ADE沿AE折叠,当点D的对应点D'落在∠ABC的角平分线上时,DE的长为____.
21.(8分)如图,AB是⊙O的弦,过点O作OC⊥OA,OC交于AB于P,且CP=CB.
(1)求证:BC是⊙O的切线;
(2)已知∠BAO=25°,点Q是弧AmB上的一点.
①求∠AQB的度数;
②若OA=18,求弧AmB的长.
22.(10分)如图1,已知点A(a,0),B(0,b),且a、b满足+(a+b+3)2=0,平等四边形ABCD的边AD与y轴交于点E,且E为AD中点,双曲线y=经过C、D两点.
(1)a= ,b= ;
(2)求D点的坐标;
(3)点P在双曲线y=上,点Q在y轴上,若以点A、B、P、Q为顶点的四边形是平行四边形,试求满足要求的所有点Q的坐标;
(4)以线段AB为对角线作正方形AFBH(如图3),点T是边AF上一动点,M是HT的中点,MN⊥HT,交AB于N,当T在AF上运动时,的值是否发生改变?若改变,求出其变化范围;若不改变,请求出其值,并给出你的证明.
23.(10分)为落实立德树人的根本任务,加强思改、历史学科教师的专业化队伍建设.某校计划从前来应聘的思政专业(一名研究生,一名本科生)、历史专业(一名研究生、一名本科生)的高校毕业生中选聘教师,在政治思想审核合格的条件下,假设每位毕业生被录用的机会相等
(1)若从中只录用一人,恰好选到思政专业毕业生的概率是 :
(2)若从中录用两人,请用列表或画树状图的方法,求恰好选到的是一名思政研究生和一名历史本科生的概率.
24.(10分)某水果商场经销一种高档水果,原价每千克50元.
(1)连续两次降价后每千克32元,若每次下降的百分率相同.求每次下降的百分率;
(2)若每千克盈利10元,每天可售出500千克,经市场调查发现,在进货价不变的情况下,商场决定采取适当的涨价措施,但商场规定每千克涨价不能超过8元,若每千克涨价1元,日销售量将减少20千克,现该商场要保证每天盈利6000元,那么每千克应涨价多少元?
25.(12分)将△ABC绕点B逆时针旋转到△A′BC′,使A、B、C′在同一直线上,若∠BCA=90°,∠BAC=30°,AB=4cm,求图中阴影部分的面积.
26.(12分)我市某工艺厂为配合北京奥运,设计了一款成本为20元∕件的工艺品投放市场进行试销.经过调查,得到如下数据:
(1)把上表中x、y的各组对应值作为点的坐标,在下面的平面直角坐标系中描出相应的点,猜想y与x的函数关系,并求出函数关系式;
(2)当销售单价定为多少时,工艺厂试销该工艺品每天获得的利润最大?最大利润是多少?(利润=销售总价﹣成本总价)
(3)当地物价部门规定,该工艺品销售单价最高不能超过45元/件,那么销售单价定为多少时,工艺厂试销该工艺品每天获得的利润最大?
参考答案
一、选择题(每题4分,共48分)
1、B
2、C
3、D
4、B
5、D
6、A
7、C
8、C
9、C
10、C
11、B
12、C
二、填空题(每题4分,共24分)
13、(2,10) 16
14、
15、2
16、
17、1
18、1
三、解答题(共78分)
19、(1)且;(2)见解析,M(3,4) ;(3)△ABM的面积有最大值,
20、或.
21、(1)见解析;(2)①∠AQB=65°,②l弧AmB=23π.
22、(1)﹣1,﹣2;(2)D(1,4);(3)Q1(0,6),Q2(0,﹣6),Q3(0,2);(4)不变,的定值为,证明见解析
23、(1);(2)恰好选到的是一名思政研究生和一名历史本科生的概率为.
24、(1)20%;(2)每千克应涨价5元.
25、4πcm2
26、(1)图见解析,y=-10x+1;(2)单价定为50元∕件时,工艺厂试销该工艺品每天获得的利润最大,最大利润是9000元;(3)单价定为45元∕件时,工艺厂试销该工艺品每天获得的利润最大.
销售单价x(元/件)
…
30
40
50
60
…
每天销售量y(件)
…
500
400
300
200
…
2023-2024学年山东省菏泽九年级数学第一学期期末联考模拟试题含答案: 这是一份2023-2024学年山东省菏泽九年级数学第一学期期末联考模拟试题含答案,共8页。试卷主要包含了答题时请按要求用笔,如图,在△OAB中,顶点O等内容,欢迎下载使用。
山东省菏泽东明县联考2023-2024学年数学八上期末复习检测模拟试题含答案: 这是一份山东省菏泽东明县联考2023-2024学年数学八上期末复习检测模拟试题含答案,共8页。试卷主要包含了 如图,直线l,如图所示,在平面直角坐标系中,点在,下列条件中能作出唯一三角形的是等内容,欢迎下载使用。
山东省菏泽单县联考2023-2024学年八上数学期末复习检测试题含答案: 这是一份山东省菏泽单县联考2023-2024学年八上数学期末复习检测试题含答案,共7页。试卷主要包含了考生必须保证答题卡的整洁,下列三角形中,平面直角坐标系中,点A等内容,欢迎下载使用。