广西壮族自治区玉林市陆川县2023-2024学年九年级数学第一学期期末综合测试试题含答案
展开
这是一份广西壮族自治区玉林市陆川县2023-2024学年九年级数学第一学期期末综合测试试题含答案,共7页。
学校_______ 年级_______ 姓名_______
注意事项:
1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(每小题3分,共30分)
1.在一个不透明的布袋中,有红色、黑色、白色球共40个,它们除颜色外其他完全相同,小明通过多次摸球试验后发现其中摸到红色球、黑色球的频率稳定在和,则布袋中白色球的个数可能是( )
A.24B.18C.16D.6
2.五粮液集团2018年净利润为400亿元,计划2020年净利润为640亿元,设这两年的年净利润平均增长率为x,则可列方程是( )
A.B.
C.D.
3.若将半径为6cm的半圆形纸片围成一个圆锥的侧面,则这个圆锥的底面圆半径是( )
A.1cmB.2cmC.3cmD.4cm
4.若均为锐角,且,则( ).
A.B.
C.D.
5.抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=-1,与x轴的一个交点在(-3,0)和(-2,0)之间,其部分图象如图,则下列结论:①4ac-b2<0;②2a-b=0;③a+b+c<0;④点(x1,y1),(x2,y2)在抛物线上,若x1<x2,则y1<y2 .正确结论的个数是( )
A.1B.2C.3D.4
6.如图,点E为菱形ABCD边上的一个动点,并延A→B→C→D的路径移动,设点E经过的路径长为x,△ADE的面积为y,则下列图象能大致反映y与x的函数关系的是( )
A.B.
C.D.
7.反比例函数y=在每个象限内的函数值y随x的增大而增大,则m的取值范围是( )
A.m<0B.m>0C.m>﹣1D.m<﹣1
8.下图是用来证明勾股定理的图案被称为“赵爽弦图”,由四个全等的直角三角形和一个小正方形拼成的大正方形,对其对称性表述,正确的是( )
A.轴对称图形B.中心对称图形
C.既是轴对称图形又是中心对称图形D.既不是轴对称图形又不是中心对称图形
9.如图,⊙O是△ABC的外接圆,∠B=60°,OP⊥AC于点P,OP=2,则⊙O的半径为( ).
A.4B.6C.8D.12
10.小张同学制作了四张材质和外观完全一样的书签,每个书签上写着一本书的名称或一个作者姓名,分别是:《西游记》、施耐庵、《安徒生童话》、安徒生,从这四张书签中随机抽取两张,则抽到的书签正好是相对应的书名和作者姓名的概率是( )
A.B.C.D.
二、填空题(每小题3分,共24分)
11.如图,、是两个等边三角形,连接、.若,,,则__________.
12.点(2,5)在反比例函数的图象上,那么k=_____.
13.已知是关于x的一元二次方程的一个解,则此方程的另一个解为____.
14.如图,10个边长为1的正方形摆放在平面直角坐标系中,经过A(1,0)点的一条直线1将这10个正方形分成面积相等的两部分,则该直线的解析式为_____.
15.如图,一抛物线与轴相交于,两点,其顶点在折线段上移动,已知点,,的坐标分别为,,,若点横坐标的最小值为0,则点横坐标的最大值为______.
16.半径为2的圆中,60°的圆心角所对的弧的弧长为_____.
17.若把一根长200cm的铁丝分成两部分,分别围成两个正方形,则这两个正方形的面积的和最小值为_____.
18.甲、乙、丙三人站成一排合影留念,则甲、乙二人相邻的概率是 .
三、解答题(共66分)
19.(10分)如果一个直角三角形的两条直角边的长相差2cm,面积是24,那么这个三角形的两条直角边分别是多少?
20.(6分)已知二次函数中,函数与自变量的部分对应值如下表:
(1)求该二次函数的表达式;
(2)当时,的取值范围是 .
21.(6分)为了提高学生对毒品危害性的认识,我市相关部门每个月都要对学生进行“禁毒知识应知应会”测评.为了激发学生的积极性,某校对达到一定成绩的学生授予“禁毒小卫士”的荣誉称号.为了确定一个适当的奖励目标,该校随机选取了七年级20名学生在5月份测评的成绩,数据如下:
收集数据:90 91 89 96 90 98 90 97 91 98 99 97 91 88 90 97 95 90 95 88
(1)根据上述数据,将下列表格补充完整.
整理、描述数据:
数据分析:样本数据的平均数、众数和中位数如下表:
得出结论:
(2)根据所给数据,如果该校想确定七年级前50%的学生为“良好”等次,你认为“良好”等次的测评成绩至少定为 分.
数据应用:
(3)根据数据分析,该校决定在七年级授予测评成绩前30%的学生“禁毒小卫士”荣誉称号,请估计评选该荣誉称号的最低分数,并说明理由.
22.(8分)计算:
(1)
(2)解方程:
23.(8分)如图①,已知抛物线y=ax2+bx+c的图像经过点A(0,3)、B(1,0),其对称轴为直线l:x=2,过点A作AC∥x轴交抛物线于点C,∠AOB的平分线交线段AC于点E,点P是抛物线上的一个动点,设其横坐标为m.
(1)求抛物线的解析式;
(2)若动点P在直线OE下方的抛物线上,连结PE、PO,当m为何值时,四边形AOPE面积最大,并求出其最大值;
(3)如图②,F是抛物线的对称轴l上的一点,在抛物线上是否存在点P使△POF成为以点P为直角顶点的等腰直角三角形?若存在,直接写出所有符合条件的点P的坐标;若不存在,请说明理由.
24.(8分)如图1,中,是的高.
(1)求证:.
(2)与相似吗?为什么?
(3)如图2,设的中点为的中点为,连接,求的长.
25.(10分)(1)解方程:x2+4x-1=0
(2)已知α为锐角,若,求的度数.
26.(10分)已知:△ABC在直角坐标平面内,三个顶点的坐标分别为A(0,3)、B(3,4)、C(2,2).(正方形网格中每个小正方形的边长是一个单位长度),
(1)在正方形网格中画出△ABC绕点O顺时针旋转90°得到△A1B1C1.
(2)求出线段OA旋转过程中所扫过的面积(结果保留π).
参考答案
一、选择题(每小题3分,共30分)
1、C
2、B
3、C
4、D
5、C
6、D
7、D
8、B
9、A
10、D
二、填空题(每小题3分,共24分)
11、1
12、1
13、
14、y=x-,
15、7
16、
17、1150cm1
18、
三、解答题(共66分)
19、一条直角边的长为 6cm,则另一条直角边的长为8cm.
20、(1)或;(2)或
21、(1)5;3;90;(2)91;(3)估计评选该荣誉称号的最低分数为97分.理由见解析.
22、(1);(2)
23、(1)y=x2-4x+3.(2)当m=时,四边形AOPE面积最大,最大值为.(3)P点的坐标为 :P1(,),P2(,),P3(,),P4(,).
24、(1)见解析;(2),理由见解析;(3)
25、(1), ;(2)75°.
26、(1)见解析;(2)
···
···
···
···
成绩/分
88
89
90
91
95
96
97
98
99
学生人数
2
1
3
2
1
2
1
平均数
众数
中位数
93
91
相关试卷
这是一份广西壮族自治区玉林市北流市2023-2024学年九年级上学期期末数学试题(含答案),共20页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
这是一份广西壮族自治区玉林市2023-2024学年九年级数学第一学期期末教学质量检测模拟试题含答案,共8页。试卷主要包含了考生必须保证答题卡的整洁,反比例函数的图象分布的象限是等内容,欢迎下载使用。
这是一份广西壮族自治区玉林市博白县2023-2024学年数学九年级第一学期期末联考试题含答案,共8页。试卷主要包含了抛物线的顶点坐标是,下列图形中一定是相似形的是等内容,欢迎下载使用。