2023-2024学年广西省玉林市九年级数学第一学期期末统考模拟试题含答案
展开学校_______ 年级_______ 姓名_______
考生须知:
1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题(每题4分,共48分)
1.如图,的半径为3,是的弦,直径,,则的长为( )
A.B.C.D.
2.如图,DC是⊙O的直径,弦AB⊥CD于点F,连接BC,BD,则错误结论为( )
A.OF=CFB.AF=BFC.D.∠DBC=90°
3.下列物体的光线所形成的投影是平行投影的是( )
A.台灯B.手电筒C.太阳D.路灯
4.将抛物线y=x2﹣2向右平移3个单位长度,再向上平移2个单位长度,则所得抛物线的解析式为( )
A.y=(x+3)2B.y=(x﹣3)2C.y=(x+2)2+1D.y=(x﹣2)2+1
5.如图,中,中线AD,BE相交于点F,,交于AD于点G,下列说法①;②;③与面积相等;④与四边形DCEF面积相等.结论正确的是( )
A.①③④B.②③④C.①②③D.①②④
6.下列命题正确的是( )
A.三点确定一个圆B.圆中平分弦的直径必垂直于弦
C.矩形一定有外接圆D.三角形的内心是三角形三条中线的交点
7.下列正多边形中,绕其中心旋转72°后,能和自身重合的是( )
A.正方形B.正五边形
C.正六边形D.正八边形
8.如图,点E是正方形ABCD的边DC上一点,把△ADE绕点A顺时针旋转90°到△ABF的位置,若四边形AECF的面积为25,DE=3,则AE的长为( )
A.B.5C.8D.4
9.把函数y=﹣3x2的图象向右平移2个单位,所得到的新函数的表达式是( )
A.y=﹣3x2﹣2B.y=﹣3(x﹣2)2C.y=﹣3x2+2D.y=﹣3(x+2)2
10.在同一平面直角坐标系中,函数y=x﹣1与函数的图象可能是
A.B.C.D.
11.用配方法解一元二次方程x2﹣6x﹣10=0时,下列变形正确的为( )
A.(x+3)2=1B.(x﹣3)2=1
C.(x+3)2=19D.(x﹣3)2=19
12.用配方法解一元二次方程x2+8x-9=0,下列配方法正确的是( )
A.B.C.D.
二、填空题(每题4分,共24分)
13.扫地机器人能够自主移动并作出反应,是因为它发射红外信号反射回接收器,机器人在打扫房间时,若碰到障碍物则发起警报.若某一房间内A、B两点之间有障碍物,现将A、B两点放置于平面直角坐标系xOy中(如图),已知点A,B的坐标分别为(0,4),(6,4),机器人沿抛物线y=ax2﹣4ax﹣5a运动.若机器人在运动过程中只触发一次报警,则a的取值范围是_____.
14.如图,在等边三角形ABC中,AC=9,点O在AC上,且AO=3,点P是AB上的一动点,连接OP,将线段OP绕点O逆时针旋转60°得到线段OD,要使点D恰好落在BC上,则AP的长是________.
15.如图,将一张矩形纸片ABCD沿对角线BD折叠,点C的对应点为,再将所折得的图形沿EF折叠,使得点D和点A重合若,,则折痕EF的长为______.
16.如图,□中,,,的周长为25,则的周长为__________.
17.已知抛物线y=ax2+bx+c开口向上,一条平行于x轴的直线截此抛物线于M、N两点,那么线段MN的长度随直线向上平移而变_____.(填“大”或“小”)
18.有三张正面分别写有数字﹣1,1,2的卡片,它们背面完全相同,现将这三张卡片背面朝上洗匀后随即抽取一张,以其正面数字作为a的值,然后再从剩余的两张卡片随机抽一张,以其正面的数字作为b的值,则点(a,b)在第二象限的概率为_____.
三、解答题(共78分)
19.(8分)已知关于x的方程ax2+(3﹣2a)x+a﹣3=1.
(1)求证:无论a为何实数,方程总有实数根.
(2)如果方程有两个实数根x1,x2,当|x1﹣x2|=时,求出a的值.
20.(8分)已知二次函数.
用配方法求该二次函数图象的顶点坐标;
在所给坐标系中画出该二次函数的图象,并直接写出当时自变量的取值范围.
21.(8分)某商贸公司以每千克元的价格购进一种干果,计划以每千克元的价格销售,为了让顾客得到更大的实惠,现决定降价销售,已知这种干果销售量(千克)与每千克降价(元)之间满足一次函数关系,其图象如图所示: .
(1)求与之间的函数关系式;
(2)函数图象中点表示的实际意义是 ;
(3)该商贸公司要想获利元,则这种干果每千克应降价多少元?
22.(10分)如图,一次函数y=k1x+b的图象与反比例函数y=的图象相交于A,B两点,点A的坐标为(﹣1,3),点B的坐标为(3,n).
(1)求这两个函数的表达式;
(2)点P在线段AB上,且S△APO:S△BOP=1:3,求点P的坐标.
23.(10分)科研人员在测试火箭性能时,发现火箭升空高度与飞行时间之间满足二次函数.
(1)求该火箭升空后飞行的最大高度;
(2)点火后多长时间时,火箭高度为.
24.(10分)在初中阶段的函数学习中,我们经历了“确定函数的表达式一一利用函数图象研究其性质一一运用函数解决问题”的学习过程.在画函数图象时,我们通过描点或平移的方法画出了所学的函数图象.同时,我们也学习了绝对值的意义结合上面经历的学习过程,现在来解决下面的问题:在函数中,当时,.
(1)求这个函数的表达式;
(2)在给出的平面直角坐标系中,请用你喜欢的方法画出这个函数的图象并写出这个函数的一条性质;
(3)已如函数的图象如图所示,结合你所画的函数图象,直接写出不等式的解集.
25.(12分)如图,点E、F在BC上,BE=CF,AB=DC,∠B=∠C.求证:∠A=∠D.
26.(12分)某演出队要购买一批演出服,商店给出如下条件:如果一次性购买不超过10件,每件80元;如果一次性购买多于10件,每增加1件,每件服装降低2元,但每件服装不得低于50元,演出队一次性购买这种演出服花费1200元,请问此演出队购买了多少件这种演出服?
参考答案
一、选择题(每题4分,共48分)
1、C
2、A
3、C
4、B
5、D
6、C
7、B
8、A
9、B
10、C
11、D
12、C
二、填空题(每题4分,共24分)
13、﹣<a<
14、6
15、
16、2
17、大
18、
三、解答题(共78分)
19、(1)见解析;(2)﹣2或2
20、(1)顶点坐标为;(2)图象见解析,由图象得当时.
21、(1)y=10x+100;(2)当x为0,y=100,即这种干果没有降价,以每千克60元的价格销售时,销售量是100千克;(3)商贸公司要想获利2090元,则这种干果每千克应降价9元.
22、(1)反比例函数解析式为y=﹣;一次函数解析式为y=﹣x+2;(2)P点坐标为(0,2).
23、(1)该火箭升空后飞行的最大高度为;(2)点火后和时,火箭高度为.
24、(1);(2)函数图象见解析,性质:函数图象关于y轴对称(答案不唯一);(3)不等式的解集为或
25、答案见解析
26、购买了20件这种服装
2023-2024学年广西省玉林市数学九年级第一学期期末教学质量检测模拟试题含答案: 这是一份2023-2024学年广西省玉林市数学九年级第一学期期末教学质量检测模拟试题含答案,共8页。试卷主要包含了考生要认真填写考场号和座位序号,下列说法正确的是等内容,欢迎下载使用。
2023-2024学年广西省玉林市名校九年级数学第一学期期末检测试题含答案: 这是一份2023-2024学年广西省玉林市名校九年级数学第一学期期末检测试题含答案,共8页。
2023-2024学年广西省来宾市九年级数学第一学期期末统考模拟试题含答案: 这是一份2023-2024学年广西省来宾市九年级数学第一学期期末统考模拟试题含答案,共8页。试卷主要包含了下列函数中,是反比例函数的是等内容,欢迎下载使用。