2023-2024学年四川省南充营山县联考数学九上期末达标测试试题含答案
展开
这是一份2023-2024学年四川省南充营山县联考数学九上期末达标测试试题含答案,共8页。试卷主要包含了答题时请按要求用笔,下列事件中,是随机事件的是,如图,在中,,,于点等内容,欢迎下载使用。
学校_______ 年级_______ 姓名_______
注意事项:
1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(每小题3分,共30分)
1.直角三角形的两边长分别为16和12,则此三角形的外接圆半径是( )
A.8或6B.10或8C.10D.8
2.如图,将一把两边都带有刻度的直尺放在半圆形纸片上,使其一边经过圆心O,另一边所在直线与半圆相交于点D、E,量出半径OC=5cm,弦DE=8cm,则直尺的宽度是( )
A.4cmB.3cmC.2cmD.1cm
3.一个不透明的袋子中装有20个红球,2个黑球,1个白球,它们除颜色外都相同,若从中任意摸出1个球,则( )
A.摸出黑球的可能性最小B.不可能摸出白球
C.一定能摸出红球D.摸出红球的可能性最大
4.已知二次函数(是常数),下列结论正确的是( )
A.当时,函数图象经过点
B.当时,函数图象与轴没有交点
C.当时,函数图象的顶点始终在轴下方
D.当时,则时,随的增大而增大.
5.二次函数y=x2﹣2x+1与x轴的交点个数是( )
A.0B.1C.2D.3
6.下列事件中,是随机事件的是( )
A.任意一个五边形的外角和等于540°
B.通常情况下,将油滴入水中,油会浮在水面上
C.随意翻一本120页的书,翻到的页码是150
D.经过有交通信号灯的路口,遇到绿灯
7.若二次函数的图象的顶点在第一象限,且经过点(0,1)和(-1,0),则的值的变化范围是( )
A.B.C.D.
8.如图,在四边形ABCD中,ADBC,DE⊥BC,垂足为点E,连接AC交DE于点F,点G为AF的中点,∠ACD=2∠ACB,若DG=3,EC=1,则DE的长为( )
A.2B. C.2D.
9.如图,在中,,,于点.则与的周长之比为( )
A.1:2B.1:3C.1:4D.1:5
10.如图,在中,点D,E分别为AB,AC边上的点,且,CD、BE相较于点O,连接AO并延长交DE于点G,交BC边于点F,则下列结论中一定正确的是
A.B.C.D.
二、填空题(每小题3分,共24分)
11.有一条抛物线,三位学生分别说出了它的一些性质:甲说:对称轴是直线;乙说:与轴的两个交点的距离为6;丙说:顶点与轴的交点围成的三角形面积等于9,则这条抛物线解析式的顶点式是______.
12.如图,飞镖游戏板中每一块小正方形除颜色外都相同.若某人向游戏板投掷飞镖一次(假设飞镖落在游戏板上),则飞镖落在阴影部分的概率是_________.
13.若关于的一元二次方程没有实数根,则的取值范围是__________.
14.如图,是一个半径为,面积为的扇形纸片,现需要一个半径为的圆形纸片,使两张纸片刚好能组合成圆锥体,则_____.
15.点A(-2,y1),B(-1,y2)都在反比例函数y=- 图象上,则y1 _____________ y2 (选填 “ ﹤” , “>”或” = ”)
16.如图,点在函数的图象上,直线分别与轴、轴交于点,且点的横坐标为4,点的纵坐标为,则的面积是________.
17.已知△ABC的内角满足=__________度.
18.圣诞节,小红用一张半径为24cm,圆心角为120°的扇形红色纸片做成一个圆锥形的帽子,则这个圆锥形帽子的高为_____cm.
三、解答题(共66分)
19.(10分)如图,点是等边中边的延长线上的一点,且.以为直径作,分别交、于点、.
(1)求证:是的切线;
(2)连接,交于点,若,求线段、与围成的阴影部分的面积(结果保留根号和).
20.(6分)某商场购进一种单价为30元的商品,如果以单价55元售出,那么每天可卖出200个,根据销售经验,每降价1元,每天可多卖出10个.假设每个降价x(元)时,每天获得的利润为W(元).则降价多少元时,每天获得的利润最大?
21.(6分)已知:在△ABC中,点D、点E分别在边AB、AC上,且DE // BC,BE平分∠ABC.
(1)求证:BD=DE;
(2)若AB=10,AD=4,求BC的长.
22.(8分)如图,抛物线y=ax2+bx(a<0)过点E(10,0),矩形ABCD的边AB在线段OE上(点A在点B的左边),点C,D在抛物线上.设A(t,0),当t=2时,AD=1.
(1)求抛物线的函数表达式.
(2)当t为何值时,矩形ABCD的周长有最大值?最大值是多少?
(3)保持t=2时的矩形ABCD不动,向右平移抛物线.当平移后的抛物线与矩形的边有两个交点G,H,且直线GH平分矩形的面积时,求抛物线平移的距离.
23.(8分)如图,在一笔直的海岸线上有A,B两观景台,A在B的正东方向,BP=5(单位:km),有一艘小船停在点P处,从A测得小船在北偏西60°的方向,从B测得小船在北偏东45°的方向.
(1)求A、B两观景台之间的距离;
(2)小船从点P处沿射线AP的方向进行沿途考察,求观景台B到射线AP的最短距离.(结果保留根号)
24.(8分)如图,已知的三个顶点的坐标分别为、、,P(a,b)是△ABC的边AC上一点:
(1)将绕原点逆时针旋转90°得到,请在网格中画出,旋转过程中点A所走的路径长为 .
(2)将△ABC沿一定的方向平移后,点P的对应点为P2(a+6,b+2),请在网格画出上述平移后的△A2B2C2,并写出点A2、的坐标:A2( ).
(3)若以点O为位似中心,作△A3B3C3与△ABC成2:1的位似,则与点P对应的点P3位似坐标为 (直接写出结果).
25.(10分)已知二次函数y=x2﹣4x+1.
(1)在所给的平面直角坐标系中画出它的图象;
(2)若三点A(x1,y1),B(x2,y2),C(x1.y1)且2<x1<x2<x1,则y1,y2,y1的大小关系为 .
(1)把所画的图象如何平移,可以得到函数y=x2的图象?请写出一种平移方案.
26.(10分)某公司2019年10月份营业额为万元,12月份营业额达到万元,求该公司两个月营业额的月平均增长率.
参考答案
一、选择题(每小题3分,共30分)
1、B
2、B
3、D
4、D
5、B
6、D
7、A
8、C
9、A
10、C
二、填空题(每小题3分,共24分)
11、,
12、
13、
14、
15、<
16、
17、75
18、
三、解答题(共66分)
19、(1)详见解析;(2)
20、降价2.5元时,每天获得的利润最大.
21、(1)见解析;(2)15
22、(1);(2)当t=1时,矩形ABCD的周长有最大值,最大值为;(3)抛物线向右平移的距离是1个单位.
23、(1)A、B两观景台之间的距离为=(5+5)km;(2)观测站B到射线AP的最短距离为()km.
24、(1)画图见解析,π ;(2)画图见解析,(4,4);(3)P3 (2a,2b)或P3 (-2a,-2b)
25、(1)答案见解析;(2)y1<y2<y1;(1)先向左平移2个单位,再向上平移1个单位.
26、
相关试卷
这是一份2023-2024学年四川省南充市四校联考九上数学期末达标检测模拟试题含答案,共9页。试卷主要包含了考生必须保证答题卡的整洁等内容,欢迎下载使用。
这是一份2023-2024学年四川省南充市第九中学九上数学期末联考模拟试题含答案,共7页。
这是一份四川省南充市营山县第三中学2023-2024学年八上数学期末联考试题含答案,共8页。试卷主要包含了下列各点在函数的图象上的点的是,4的算术平方根是,在平面直角坐标系中,点P等内容,欢迎下载使用。