上海浦东第四教育署2023-2024学年数学九上期末质量跟踪监视试题含答案
展开
这是一份上海浦东第四教育署2023-2024学年数学九上期末质量跟踪监视试题含答案,共7页。试卷主要包含了答题时请按要求用笔, 抛物线的顶点坐标,二次函数的顶点坐标为等内容,欢迎下载使用。
学校_______ 年级_______ 姓名_______
注意事项:
1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(每小题3分,共30分)
1.的值等于( )
A.B.C.D.
2.如图,与正方形ABCD的两边AB,AD相切,且DE与相切于点E.若的半径为5,且,则DE的长度为( )
A.5B.6C.D.
3.在函数中,自变量x的取值范围是( )
A.x>0B.x≥﹣4C.x≥﹣4且x≠0D.x>0且x≠﹣1
4.甲袋中装有形状、大小与质地都相同的红球3个,乙袋中装有形状、大小与质地都相同的红球2个,黄球1个,下列事件为随机事件的是( )
A.从甲袋中随机摸出1个球,是黄球
B.从甲袋中随机摸出1个球,是红球
C.从乙袋中随机摸出1个球,是红球或黄球
D.从乙袋中随机摸出1个球,是黄球
5.如图,在中,,,点是边上的一个动点,以为直径的圆交于点,若线段长度的最小值是4,则的面积为( )
A.32B.36C.40D.48
6.若一元二次方程ax2+bx+c=0的一个根为﹣1,则( )
A.a+b+c=0 B.a﹣b+c=0 C.﹣a﹣b+c=0 D.﹣a+b+c=0
7. 抛物线的顶点坐标( )
A.(-3,4)B.(-3,-4)C.(3,-4)D.(3,4)
8.二次函数的顶点坐标为( )
A.B.C.D.
9.如图,任意转动正六边形转盘一次,当转盘停止转动时,指针指向大于3的数的概率是( )
A.B.C.D.
10.掷一枚质地均匀硬币,前3次都是正面朝上,掷第4次时正面朝上的概率是( )
A.0B.C.D.1
二、填空题(每小题3分,共24分)
11.已知实数m,n满足等式m2+2m﹣1=0,n2+2n﹣1=0,那么求的值是_____.
12.矩形的一条对角线长为26,这条对角线与矩形一边夹角的正弦值为,那么该矩形的面积为___.
13.圆的半径为1,AB是圆中的一条弦,AB=,则弦AB所对的圆周角的度数为____.
14.黄冈中学是百年名校,百年校庆上的焰火晚会令很多人记忆犹新.有一种焰火升高高度为h(m)与飞行时间t(s)的关系式是,若这种焰火在点燃升空后到最高处引爆,则从点火到引爆所需时间为__________s.
15.如图,△ABC绕点A逆时针旋转得到△AB′C′,点C在AB'上,点C的对应点C′在BC的延长线上,若∠BAC'=80°,则∠B=______度.
16.一元二次方程的一个根为,另一个根为_____.
17.如图,在平面直角坐标系中,点A是x轴正半轴上一点,菱形OABC的边长为5,且tan∠COA=,若函数的图象经过顶点B,则k的值为________.
18.如图,国庆节期间,小明一家自驾到某景区C游玩,到达A地后,导航显示车辆应沿北偏西60°方向行驶8千米至B地,再沿北偏东45°方向行驶一段距离到达景区C,小明发现景区C恰好在A地的正北方向,则B,C两地的距离为_____.
三、解答题(共66分)
19.(10分)解方程:x2﹣4x﹣12=1.
20.(6分)如图,在平面直角坐标系中,一次函数的图象与反比例函数的图象分别相交于第一、三象限内的,两点,与轴交于点.
(1)求该反比例函数和一次函数的解析式;
(2)在轴上找到一点使最大,请直接写出此时点的坐标.
21.(6分)如图,,平分,过点作交于,连接交于,若,,求,的长.
22.(8分)2019年12月17日,我国第一艘国产航母“山东舰”在海南三亚交付海军.如图,“山东舰”在一次试水测试中,航行至处,观测指挥塔位于南偏西方向,在沿正南方向以30海里/小时的速度匀速航行2小时后,到达处,再观测指挥塔位于南偏西方向,若继续向南航行.求“山东舰”与指挥塔之间的最近距离为多少海里?(结果保留根号)
23.(8分)城市规划期间,欲拆除一电线杆AB,已知距电线杆AB水平距离14m的D处有一大坝,背水坡CD的坡度i=2:1,坝高CF为2m,在坝顶C处测得杆顶A的仰角为30°,D、E之间是宽为2m的人行道.
试问:在拆除电线杆AB时,为确保行人安全,是否需要将此人行道封上?请说明理由(在地面上,以点B为圆心,以AB长为半径的圆形区域为危险区域.)(≈1.732,≈1.414)
24.(8分)某小型工厂9月份生产的、两种产品数量分别为200件和100件,、两种产品出厂单价之比为2:1,由于订单的增加,工厂提高了、两种产品的生产数量和出厂单价,10月份产品生产数量的增长率和产品出厂单价的增长率相等,产品生产数量的增长率是产品生产数量的增长率的一半,产品出厂单价的增长率是产品出厂单价的增长率的2倍,设产品生产数量的增长率为(),若10月份该工厂的总收入增加了,求的值.
25.(10分)如图,是的角平分线,延长至点使得.求证:.
26.(10分)如图①是图②是其侧面示意图(台灯底座高度忽略不计),其中灯臂,灯罩,灯臂与底座构成的.可以绕点上下调节一定的角度.使用发现:当与水平线所成的角为30°时,台灯光线最佳.现测得点D到桌面的距离为.请通过计算说明此时台灯光线是否为最佳?(参考数据:取1.73).
参考答案
一、选择题(每小题3分,共30分)
1、D
2、B
3、C
4、D
5、D
6、B
7、D
8、D
9、D
10、B
二、填空题(每小题3分,共24分)
11、1或﹣2
12、240
13、60°或120°
14、1
15、1
16、
17、1
18、4千米.
三、解答题(共66分)
19、x1=6,x2=﹣2.
20、(1),;(2)
21、BD=,DN=
22、
23、不必封上人行道
24、5%
25、证明见解析.
26、此时台灯光线是最佳
相关试卷
这是一份河北保定雄县2023-2024学年九上数学期末质量跟踪监视模拟试题含答案,共7页。试卷主要包含了答题时请按要求用笔,抛物线y=等内容,欢迎下载使用。
这是一份广西贵港市覃塘区2023-2024学年九上数学期末质量跟踪监视试题含答案,共8页。试卷主要包含了考生必须保证答题卡的整洁,在中,最简二次根式的个数为,如图,四边形内接于⊙,等内容,欢迎下载使用。
这是一份广东韶关曲江2023-2024学年九上数学期末质量跟踪监视模拟试题含答案,共9页。试卷主要包含了考生必须保证答题卡的整洁,已知如图,的倒数是,下列命题是真命题的个数是等内容,欢迎下载使用。