河北省邯郸市磁县2022-2023学年八年级上学期期末模拟测试数学试卷(含解析)
展开1. 下面四幅作品分别代表二十四节气中的“立春”、“芒种”、“白露”、“大雪”,其中是轴对称图形的是( )
A. B.
C. D.
2. 下列图形具有稳定性的是( )
A. B. C. D.
3. 人体中枢神经系统中含有1千亿个神经元.某个神经元的直径约为52微米,52微米为5.2 × 10-5米. 将5.2 × 10-5用小数表示为( )
A. 0.00052B. 0.000052C. 0.0052D. 0.0000052
4. 以下列各组线段的长为边能组成三角形的是( )
A. 2、5、8B. 2、5、3C. 6、6、2D. 9、6、2
5. 若M=(x-3)(x-4),N=(x-1)(x-6),则M与N的大小关系为()
A. M>NB. M=NC. M<ND. 由x的取值而定
6. 如图,下列条件中,不能证明△ABC≌△DCB的是( )
A. AB=DC,AC=DBB. AB=DC,∠ABC=∠DCB
C. BO=CO,∠A=∠DD. AB=DC,∠DBC=∠ACB
7. 下列各式变形中,是因式分解的是( )
A. B.
C. D.
8. 如图,将△ABC纸片沿DE折叠,使点A落在点A'处,且A'B平分∠ABC,A'C平分∠ACB.若∠BA'C=110°,则∠1+∠2的度数为( )
A. 80°B. 90°C. 100°D. 110°
9. 如图,,下列等式不一定正确的是( )
A. B. C. D.
10. 如图,在△ABD中,∠D=20°,CE垂直平分AD,交BD于点C,交AD于点E,连接AC,若AB=AC,则∠BAD的度数是( )
A. 100°B. 110°C. 120°D. 150°
11. 如图,△ABC≌△ADE,且AE∥BD,∠BAD=94°,则∠BAC的度数的值为( )
A. 84°B. 60°C. 48°D. 43°
12. 一个三角形两边长分别为4和6,且第三边长为整数,这样的三角形的周长最小值是( )
A. 20B. 16C. 13D. 12
13. 如图,在△ABC中,∠B=90°,∠A=30°,AC=a,AB=m,以点C为圆心,CB长为半径画弧交AC于点D,再以点A为圆心,AD长为半径画弧交AB于点E,则BE的长为( )
A. m﹣B. a﹣mC. 2a﹣mD. m﹣a
14. 如图,在ΔABC中,DE是AC的垂直平分线,AE=3cm,ΔABD的周长为13cm,则ΔABC的周长是( )
A. 13cmB. 16cmC. 19cmD. 22cm
15. 去一个边长为的正方形(),剩余部分沿虚线又剪拼成一个矩形(不重叠无缝隙),则矩形的面积为( )
A. B.
C. D.
16. 如图,已知AB=AC,BE⊥AC于点E,CF⊥AB于点F,BE与CF交于点D,则下列结论中不正确的是( )
A. B.
C. 点D在平分线上D. 点D是CF的中点
二.填空题(本大题共3题,总计 12分)
17. 计算: =_________.
18. “三等分角”大约是在公元前五世纪由古希腊人提出来的,借助如图所示的“三等分角仪”能三等分任一角.这个三等分角仪由两根有槽的棒OA,OB组成,两根棒在O点相连并可绕O转动,C点固定,OC=CD=DE,点D、E可在槽中滑动.若∠BDE=75°,则∠CDE的度数是__________
19. 图,在△ABC中,AB AC,D为BC的中点,有下列结论:①△ABD ≌ △ACD;②∠B∠C;③AD平分∠BAC;④AD⊥BC;⑤△ABC的对称轴是线段AD. 其中正确的结论有__________个.
三.解答题(共7题,总计66分,解答应写出文字说明、证明过程或演算步骤)
20. 把下列各式分解因式:
(1)4a2﹣1;
(2)3a2﹣6ab+3b2
(3)a2(x﹣y)﹣4x+4y
(4)m2﹣17m﹣38
21. 分解因式:
(1)
(2)
22. 如图1,网格中的每一个正方形的边长为1,△ABC为格点三角形(点A、B、C在小正方形的顶点上),直线m为格点直线(直线m经过小正方形的格点).
(1)如图1,作出△ABC关于直线m轴对称图形△A′B′C′;
(2)如图2,在直线m上找到一点P,使PA+PB的值最小;
(3)如图3,仅用直尺将网格中的格点三角形ABC的面积三等分,并将其中的一份用铅笔涂成阴影.
(4)如图4,仅用直尺作出三角形ABC的边AB上的高,简单说明你的理由.
23. 八年级一班数学兴趣小组在一次活动中进行了探究试验活动,请你和他们一起活动吧.
(探究与发现)
(1)如图1,AD是△ABC的中线,延长AD至点E,使ED=AD,连接BE,写出图中全等的两个三角形
(理解与应用)
(2)填空:如图2,EP是△DEF的中线,若EF=5,DE=3,设EP=x,则x的取值范围是 .
(3)已知:在△ABC中,D为BC的中点,M为AC的中点,连接BM交AD于F,若AM=MF.求证:BF=AC.
24. 请你阅读下面小王同学的解题过程,思考并完成任务:
先化简,再求值:,其中:.
解:原式……第一步
……第二步
……第三步
……第四步
………………………………第五步
当时,原式.
(1)任务一:以上解题过程中,第________步是约分,其变形依据是________;
(2)任务二:请你用与小明同学不同的方法,完成化简求值;
(3)任务三:根据平时的学习经验,就分式化简时需要注意的事项给同学们提一条建议.
25. 甘蔗富含铁、锌等人体必需的微量元素,素有“补血果”的美称,是冬季热销的水果之一.为此,某水果商家12月份第一次用600元购进云南甘蔗若干千克,销售完后,他第二次又用600元购进该甘蔗,但这次每千克的进价比第一次的进价提高了,所购进甘蔗的数量比第一次少了.
(1)该商家第一次购进云南甘蔗的进价是每千克多少元?
(2)假设商家两次购进的云南甘蔗按同一价格销售,要使销售后获利不低于1000元,则每千克的售价至少为多少元?
26. 课堂上,老师提出了这样一个问题:如图1,在中,平分交于点D,且.求证:.小明的方法是:如图2,在上截取,使,连接,构造全等三角形来证明结论.
(1)小天提出,如果把小明方法叫做“截长法”,那么还可以用“补短法”通过延长线段构造全等三角形进行证明.辅助线的画法是:延长至F,使_________,连接.请补全小天提出的辅助线的画法,并在图1中画出相应的辅助线;
(2)小芸通过探究,将老师所给的问题做了进一步的拓展,给同学们提出了如下的问题:如图3,点D在的内部,,,分别平分,,,且.求证:.请你解答小芸提出的这个问题;
(3)小东将老师所给问题中的一个条件和结论进行交换,得到的命题如下:如果在中,,点D在边上,,那么平分.小东判断这个命题也是真命题,老师说小东的判断是正确的.请你利用图4对这个命题进行证明.
磁县2022-2023学年八年级(上)数学期末模拟测试
参考答案及解析
一.选择题
1.【答案】:D
解析:解:A、不是轴对称图形,本选项不符合题意;
B、不是轴对称图形,本选项不符合题意;
C、不是轴对称图形,本选项不符合题意;
D、是轴对称图形,本选项符合题意.
故选:D.
2.【答案】:A
解析:A.具有稳定性,符合题意;
B.不具有稳定性,故不符合题意;
C.不具有稳定性,故不符合题意;
D.不具有稳定性,故不符合题意,
故选:A.
3.【答案】:B
解析:解:
故选B
4.【答案】:C
解析:解:根据三角形任意两边的和大于第三边,可知:
A、2+5<8,不能够组成三角形,故不符合题意;
B、2+3=5,不能组成三角形,故不符合题意;
C、2+6>7,能组成三角形,故符合题意;
D、2+6<9,不能组成三角形,故不符合题意;
故选:C.
5.【答案】:A
解析:解: M=(x-3)(x-4)=
N=(x-1)(x-6)=
即:
故选:A.
6.【答案】:D
解析:A.由“SSS”可以判定△ABC≌△DCB,故本选项错误;
B.由“SAS”可以判定△ABC≌△DCB,故本选项错误;
C.由BO=CO可以推知∠ACB=∠DBC,则由“AAS”可以判定△ABC≌△DCB,故本选项错误;
D.由“SSA”不能判定△ABC≌△DCB,故本选项正确.
故选D.
7.【答案】:D
解析:解:A、等式的右边不是整式的积的形式,故A错误;
B、等式右边分母含有字母不是因式分解,故B错误;
C、等式的右边不是整式的积的形式,故C错误;
D、是因式分解,故D正确;
故选D.
8.【答案】:A
解析:解:连接AA′,如图:
∵A'B平分∠ABC,A'C平分∠ACB,∠BA'C=110°,
∴∠A′CB+∠A′BC=70°,
∴∠ACB+∠ABC=140°,
∴∠BAC=180°-140°=40°,
∴∠1=∠DAA′+∠DA′A,∠2=∠EAA′+∠EA′A,
∵∠DAA′=∠DA′A,∠EAA′=∠EA′A,
∴∠1+∠2=2(∠DAA′+∠EAA′)=2∠BAC=80°.
故选:A
9.【答案】:D
解析:,
,,,,
,
,
即只有选项符合题意,选项A、选项B、选项C都不符合题意;
故选:D.
10.【答案】:C
解析:解:∵CE垂直平分AD,
∴,
∴,
∴,
∵AB=AC,
∴,
∴,
∴,
故选:C.
11.【答案】:D
解析:∵△ABC≌△ADE,∠BAD=94°,
∴AB=AD,∠BAC=∠DAE,
∴∠ABD=∠ADB=×(180°﹣94°)=43°,
∵AE//BD,
∴∠DAE=∠ADB=43°,
∴∠BAC=∠DAE=43°.
故选:D.
12.【答案】:C
解析:解:设三角形的第三边为x,
∵三角形的两边长分别为4和6,
∴2<x<10,
∵第三边为整数,
∴第三边x的最小值为3,
∴三角形周长的最小值为:3+4+6=13.
故选:C
13.【答案】:A
解析:解:∵∠B=90°,∠A=30°,AC=a,
∴BC=AC=a,
∵以点C为圆心,CB长为半径画弧交AC于点D,
∴CD=BC=a,
∵以点A为圆心,AD长为半径画弧交AB于点E,
∴AD=AE=AC-CD=a,
∵AB=m,
∴BE=AB-AE=m-a,
故选:A.
14.【答案】:C
解析:解:∵DE是AC的垂直平分线,
∴AD=CD,AC=2AE=6cm,
又∵△ABD的周长=AB+BD+AD=13cm,
∴AB+BD+CD=13cm,
即AB+BC=13cm,
∴△ABC的周长=AB+BC+AC=13+6=19cm.
故选:C.
15.【答案】:D
解析:如下图:
根据题意,得,,
∴
∴剩余部分沿虚线又剪拼成一个矩形后,
∴矩形的面积
故选:D.
16.【答案】:D
解析:解:A、∵AB=AC,BE⊥AC于E,CF⊥AB于F,∠A=∠A∴△ABE≌△ACF(AAS),正确;
B∵△ABE≌△ACF,AB=AC∴BF=CE,∠B=∠C,∠DFB=∠DEC=90°∴△BDF≌△CDE(ASA),正确;
C、∵△ABE≌△ACF,AB=AC∴BF=CE,∠B=∠C,∠DFB=∠DEC=90°∴DF=DE故点D在∠BAC的平分线上,正确;
D、无法判定,错误;
故选D.
二. 填空题
17.【答案】: 3
解析:原式=1+2=3
故答案为:3.
18.【答案】: 80°
解析:∵,
∴,,
设,
∴,
∴,
∵,
∴,
即,
解得:,
.
19.【答案】: 4
解析:解:∵AB=AC,BD=CD,
∴∠B=∠C,∠BAD=∠CAD,AD⊥BC,
在△ABD和△ACD中
∴△ABD≌△ACD,
△ABC的对称轴是线段AD所在的直线.
∴①②③④都符合题意,⑤不符合题意;
故答案为4.
三.解答题
20【答案】:
(1)(2a+1)(2a﹣1);
(2)3(a﹣b)2;
(3)(x﹣y)(a+2)(a﹣2);
(4)(m﹣19)(m+2).
解析:
解:(1)4a2﹣1=(2a+1)(2a﹣1);
(2)3a2﹣6ab+3b2
=3(a2﹣2ab+b2)
=3(a﹣b)2;
(3)a2(x﹣y)﹣4x+4y
=a2(x﹣y)﹣4(x﹣y)
=(x﹣y)(a2﹣4)
=(x﹣y)(a+2)(a﹣2);
(4)m2﹣17m﹣38=(m﹣19)(m+2).
21【答案】:
(1)
(2)
解析:
【小问1解析】
解:原式
.
【小问2解析】
解:原式
.
22【答案】:
(1)见解析 (2)见解析
(3)见解析 (4)见解析
解析:
【小问1解析】
如图所示,△A′B′C′即为所求作,
【小问2解析】
如图,点P即为所求作,
【小问3解析】
如图,即为所作,
【小问4解析】
如图,选择格点D、E,证明△ACD≌△BCE.于是,AC=BC.
选择格点Q,证明△ACQ≌△BCQ,于是,AQ=BQ.
∴CQ为线段AB的垂直平分线,设CQ与AB相交于点F,则CF为所要求的△ABC的边AB上的高.
23【答案】:
(1)△BDE≌△CDA;(2)1
解:(1)∵AD是△ABC的中线,
∴BD=CD,
∵ED=AD,∠BDE=∠ADC,
∴△BDE≌△CDA;
故答案为:△BDE≌△CDA;
(2)如图,延长EP至点G,使GP=EP,连接GD,
∵EP是△DEF的中线,
∴FP=DP,
∵GP=EP,∠EPF=∠DPG,
∴△EPF≌△GPD,
∴GD=EF=5,
∵EP=x,DE=3,GD+DE>EG,
∴5+3>2x>5-3,
∴1
∵D为BC的中点,
∴BD=CD,
∵DE=AD,∠BDE=∠ADC,
∴△BDE≌△ADC,
∴BE=AC,∠E=∠CAD,
∵AM=MF.
∴∠MAF=∠MFA,
∴∠E=∠MFA=∠BFE,
∴BE=BF,
∴BF=AC.
24【答案】:
(1)五;分式的基本性质
(2),
(3)见解析
解析:
小问1解析】
解:第五步为约分,其变形依据是分式的基本性质,
故答案为:五;分式的基本性质;
小问2解析】
原式
.
当时,原式.
【小问3解析】
去括号时,要注意符号是否需要改变.(答案不唯一)
25【答案】:
(1)2元;(2)4元.
解析:
(1)设该商家第一次购买云南甘蔗的进价是每千克元,
根据题意可知:,
,
经检验,是原方程的解,
答:该商家第一次购买云南甘蔗的进价是每千克2元;
(2)设每千克的售价为元,
第一次销售了千克,第二次销售了250千克,
根据题意可知:
,
解得:,
答:每千克的售价至少为4元.
26【答案】:
(1)BD,证明见解析;(2)见解析;(3)见解析.
解析:
(1)延长AB至F,使BF=BD,连接DF,根据三角形的外角性质得到∠ABC=2∠F,则可利用SAS证明△ADF≌△ADC,根据全等三角形的性质可证明结论;
(2)在AC上截取AE,使AE=AB,连接DE,则可利用SAS证明△ADB≌△ADE,根据全等三角形的性质即可证明结论;
(3)延长AB至G,使BG=BD,连接DG,则可利用SSS证明△ADG≌△ADC,根据全等三角形的性质、角平分线的定义即可证明结论.
解析:证明:(1)如图1,延长AB至F,使BF=BD,连接DF,
则∠BDF=∠F,
∴∠ABC=∠BDF+∠F=2∠F,
∵AD平分∠BAC
∴∠BAD=∠CAD,
∵AB+BD=AC,BF=BD,
∴AF=AC,
在△ADF和△ADC中,
,
∴△ADF≌△ADC(SAS),
∴∠ACB=∠F ,
∴∠ABC=2∠ACB.
故答案为:BD.
(2)如图3,在AC上截取AE,使AE=AB,连接DE,
∵AD,BD,CD分别平分∠BAC,∠ABC,∠ACB,
∴∠DAB=∠DAE,∠DBA=∠DBC,∠DCA=∠DCB,
∵AB+BD=AC,AE=AB,
∴DB=CE,
△ADB和△ADE中,
,
∴△ADB≌△ADE(SAS),
∴BD=DE,∠ABD=∠AED,
∴DE=CE,
∴∠EDC=∠ECD,
∴∠AED=2∠ECD,
∴∠ABD=2∠ECD,
∴∠ABC=2∠ACB.
(3)如图4,延长AB至G,使BG=BD,连接DG,
则∠BDG=∠AGD,
∴∠ABC=∠BDG+∠AGD=2∠AGD,
∵∠ABC=2∠ACB,
∴∠AGD=∠ACB,
∵AB+BD=AC,BG=BD,
∴AG=AC,
∴∠AGC=∠ACG,
∴∠DGC=∠DCG,
∴DG=DC,
在△ADG和△ADC中,
,
∴△ADG≌△ADC(SSS),
∴∠DAG=∠DAC,即AD平分∠BAC.
河北省邯郸市临漳县2022-2023学年八年级上学期期末模拟测试数学试卷(含解析): 这是一份河北省邯郸市临漳县2022-2023学年八年级上学期期末模拟测试数学试卷(含解析),共16页。试卷主要包含了选择题等内容,欢迎下载使用。
河北省邯郸市广平县2022-2023学年八年级上学期期末模拟测试数学试卷(含解析): 这是一份河北省邯郸市广平县2022-2023学年八年级上学期期末模拟测试数学试卷(含解析),共19页。试卷主要包含了选择题等内容,欢迎下载使用。
河北省邯郸市丛台区2022-2023学年八年级上学期期末模拟测试数学试卷(含解析): 这是一份河北省邯郸市丛台区2022-2023学年八年级上学期期末模拟测试数学试卷(含解析),共16页。试卷主要包含了选择题等内容,欢迎下载使用。