河北省邯郸市曲周县2022-2023学年八年级上学期期末模拟测试数学试卷(含解析)
展开1. 下列图案中,是轴对称图形的是( )
A. B. C. D.
2. 下列计算正确的是( )
A. x•x3=x4B. x4+x4=x8C. (x2)3=x5D. x﹣1=﹣x
3. 人体中枢神经系统中含有1千亿个神经元.某个神经元的直径约为52微米,52微米为5.2 × 10-5米. 将5.2 × 10-5用小数表示为( )
A. 0.00052B. 0.000052C. 0.0052D. 0.0000052
4. 下列等式中,不成立的是( )
A. B.
C. D.
5. 下列不能用平方差公式直接计算的是( )
A. B.
C D.
6. 如果的乘积中不含x的一次项,那么a、b满足( )
A. B.
C. D. ,
7. 已知分式的值是零,那么的值是
A. ﹣1B. 0C. 1D. ±1
8. 若一个凸多边形的每一个外角都等于36°,则这个多边形的内角和是( )
A. 1080°B. 1260°C. 1440°D. 1620°
9. 如果关于x的方程无解,则m的值是( )
A. 2B. 0C. 1D. –2
10. 如图,△ABC中,∠A=40°,AB的垂直平分线分别交AB,AC于点D,E,连接BE,则∠BEC的大小为( )
A. 40°B. 50°C. 80°D. 100°
11. 如果把分式中的,都扩大3倍,那么分式的值( )
A. 扩大3倍B. 不变
C. 缩小3倍D. 扩大9倍
12. 下列说法正确的是( )
A. 代数式是分式B. 分式中x,y都扩大3倍,分式的值不变
C. 分式的值为0,则x的值为D. 分式是最简分式
13. 如图,在Rt△ACD和Rt△BEC中,若AD=BE,DC=EC,则不正确的结论是( ).
A. Rt△ACD和Rt△BCE全等B. OA=OB
C. E是AC的中点D. AE=BD
14. 如图,中,,,,则的周长为( )
A. 9B. 8C. 6D. 12
15. 已知甲、乙、丙均为x的一次多项式,且其一次项系数皆为正整数,若甲与乙相乘得,乙与丙相乘得,则甲、丙之积与乙的差是( )
A. B.
C. D.
16. 某部门组织调运一批物资,一运送物资车开往距离出发地180千米的目的地,出发第一小时内按原计划的速度匀速行驶,一小时后以原来速度的1.5倍匀速行驶,并比原计划提前40分钟到达目的地.设原计划速度为x千米/小时,则方程可列为( )
A. +=B. -=
C. +1=﹣D. +1=+
二.填空题(本大题共3题,总计 12分)
17. 若是完全平方式,则______.
18. 有一三角形纸片ABC,∠A=70°,点D是AC边上一点,沿BD方向剪开三角形纸片后,发现所得两个纸片均为等腰三角形,则∠C的度数可以是_____.
19. 图,在△ABC中,AB AC,D为BC的中点,有下列结论:①△ABD ≌ △ACD;②∠B∠C;③AD平分∠BAC;④AD⊥BC;⑤△ABC的对称轴是线段AD. 其中正确的结论有__________个.
三.解答题(共7题,总计66分,解答应写出文字说明、证明过程或演算步骤)
20. 计算
(1)(﹣2a2)(3ab2﹣5ab3)
(2)(5x+2y)•(3x﹣2y)
21. 先化简,然后从﹣3,0,1,3四个数中选择一个适当的数作为a的值代入求值.
22. 如图,在平面直角坐标系中,A(1,2),B(3,1),C(-2,-1).
(1)在图中作出关于轴对称的.
(2)写出点的坐标(直接写答案).
(3)的面积为___________
23. 如图,ΔABC,ΔADE均是等边三角形,点B,D,E三点共线,连按CD,CE;且CD⊥BE.
(1)求证:BD=CE;
(2)若线段DE=3,求线段BD的长.
24. 计算:
(1)已知,求的值;
(2)已知实数m、n满足m2﹣10mn+26n2+4n+4=0,求mn的值.
25. 某农场为了落实中央的“强基惠民工程”,计划将某村的居民自来水管道进行改造.该工程若由甲队单独施工恰好在规定时间内完成;若乙队单独施工,则完成工程所需天数是规定天数的1.5倍.如果由甲、乙先合做15天,那么余下的工程由甲队单独完成还需5天.
(1)这项工程的规定时间是多少天?
(2)已知甲队每天的施工费用为6500元,乙队每天的施工费用为3500元.为了缩短工期以减少对居民用水的影响,工程指挥部最终决定该工程由甲、乙队合做来完成.则该工程施工费用是多少?
26. 课堂上,老师提出了这样一个问题:如图1,在中,平分交于点D,且.求证:.小明的方法是:如图2,在上截取,使,连接,构造全等三角形来证明结论.
(1)小天提出,如果把小明方法叫做“截长法”,那么还可以用“补短法”通过延长线段构造全等三角形进行证明.辅助线的画法是:延长至F,使_________,连接.请补全小天提出的辅助线的画法,并在图1中画出相应的辅助线;
(2)小芸通过探究,将老师所给的问题做了进一步的拓展,给同学们提出了如下的问题:如图3,点D在的内部,,,分别平分,,,且.求证:.请你解答小芸提出的这个问题;
(3)小东将老师所给问题中的一个条件和结论进行交换,得到的命题如下:如果在中,,点D在边上,,那么平分.小东判断这个命题也是真命题,老师说小东的判断是正确的.请你利用图4对这个命题进行证明.
曲周县2022-2023学年八年级(上)数学期末模拟测试
参考答案
一.选择题
1.【答案】:C
解析:A选项不是轴对称图形,因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义,不符合题意.
B选项不是轴对称图形,因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义,不符合题意.
C选项轴对称图形,符合题意.
D选项不是轴对称图形,因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义,不符合题意.
2.【答案】:A
解析:解:A. x•x3=x4,正确;
B. x4+x4=2x4,原式错误;
C.(x2)3=x6,原式错误;
D. x-1=,原式错误;
故选:A.
3.【答案】:B
解析:解:
故选B
4.【答案】:C
解析:A、,故A不符合题意.
B、,故B不符合题意.
C、,故C符合题意.
D、,故D不符合题意.
故选:C.
5.【答案】:A
解析:A. ,不符合平方差公式,符合题意,
B. ,符合平方差公式,不符合题意,
C. ,符合平方差公式,不符合题意,
D. ,符合平方差公式,不符合题意,
故选:A.
6.【答案】:C
解析:解:∵
∴当时,原式不含x的一次项
故答案为C.
7.【答案】:C
解析:解:由题意可知:且,
,
故选:C.
8.【答案】:C
解析:该多边形的变数为
此多边形内角和为
故选C
9.【答案】:A
解析:解:方程去分母得:m+1﹣x=0,
解得x=m+1,
当分式方程分母为0,即x=3时,方程无解,
则m+1=3,
解得m=2.
故选A.
10.【答案】:C
解析:∵线段AB的垂直平分线交AB于D,交AC于E,
∴AE=BE,
∴∠ABE=∠A=40°,
∵∠BEC=∠A+∠ABE
∴∠BEC=40°+40°=80°.
故选:C.
11.【答案】:B
解析:.
故选:B.
12.【答案】:D
解析:A. 代数式不是分式,故该选项不正确,不符合题意;
B. 分式中x,y都扩大3倍,分式的值扩大3倍,故该选项不正确,不符合题意;
C. 分式的值为0,则x的值为,故该选项不正确,不符合题意;
D. 分式是最简分式,故该选项正确,符合题意;
故选:D.
13.【答案】:C
解析:解:A.∵∠C=∠C=90°,
∴△ACD和△BCE是直角三角形,
在Rt△ACD和Rt△BCE中,
∵AD=BE,DC=CE,
∴Rt△ACD≌Rt△BCE(HL),正确;
B.∵Rt△ACD≌Rt△BCE,
∴∠B=∠A,CB=CA,
∵CD=CE,
∴AE=BD,
在△AOE和△BOD中,
∵
∴△AOE≌△BOD(AAS),
∴AO=OB,正确,不符合题意;
C.AE=BD,CE=CD,不能推出AE=CE,错误,符合题意;
D.∵Rt△ACD≌Rt△BCE,
∴∠B=∠A,CB=CA,
∵CD=CE,
∴AE=BD,正确,不符合题意.
故选C.
14.【答案】:D
解析:解:在中,
, ,
,
,
为等边三角形,
,
的周长为:,
故答案为:D.
15.【答案】:A
解析:A
∵,
∵,
又∵甲与乙相乘得:,乙与丙相乘得:,
∴甲为,乙为,丙为,
∴甲、丙之积与乙的差是:
,
,
,
故选:A
16.【答案】:C
解析:设原计划速度为x千米/小时,
根据题意得:
原计划的时间为:,
实际的时间为: +1,
∵实际比原计划提前40分钟到达目地,
∴ +1=﹣,
故选C.
二. 填空题
17.【答案】: -3或9
解析:解:∵是完全平方式,
∴m−3=±6,
解得:m=-3或9.
故答案为:-3或9.
18.【答案】: 20°或35°或27.5°
解析:由题意知△ABD与△DBC均为等腰三角形,
对于△ABD可能有①AB=BD,此时∠ADB=∠A=70°,
∴∠BDC=180°﹣∠ADB=180°﹣70°=110°,
∠C=(180°﹣110°)=35°,
②AB=AD,此时∠ADB=(180°﹣∠A)=(180°﹣70°)=55°,
∴∠BDC=180°﹣∠ADB=180°﹣55°=125°,
∠C=(180°﹣125°)=27.5°,
③AD=BD,此时,∠ADB=180°﹣2×70°=40°,
∴∠BDC=180°﹣∠ADB=180°﹣40°=140°,
∠C=(180°﹣140°)=20°,
综上所述,∠C度数可以为20°或35°或27.5°.
故答案为:20°或35°或27.5°
19.【答案】: 4
解析:解:∵AB=AC,BD=CD,
∴∠B=∠C,∠BAD=∠CAD,AD⊥BC,
在△ABD和△ACD中
∴△ABD≌△ACD,
△ABC的对称轴是线段AD所在的直线.
∴①②③④都符合题意,⑤不符合题意;
故答案为4.
三.解答题
20【答案】:
(1)﹣6a3b2+10a3b3
(2)15x2﹣4xy﹣4y2.
解析:
(1)(﹣2a2)(3ab2﹣5ab3)=﹣6a3b2+10a3b3;
(2)(5x+2y)•(3x﹣2y)
=15x2﹣10xy+6xy﹣4y2)
=15x2﹣4xy﹣4y2.
21【答案】:
a﹣15,-14.
解析:
解:原式=
=3a﹣9﹣2a﹣6
=a﹣15,
根据题意得:a不能取3,-3,0,
当a=1时,原式=1-15=﹣14
22【答案】:
(1)见解析;(2)A1(-1,2)、B1(-3,1)、C1(2,-1);(3)
解析:
解:(1)如图所示,△A1B1C1即为所求.
(2)由图知,A1(-1,2)、B1(-3,1)、C1(2,-1);
(3)△A1B1C1的面积=
23【答案】:
(1)见解析 (2)6
解析:
【小问1解析】
证明:∵△ABC、△ADE是等边三角形,
∴AB=AC,AD=AE,∠BAC=∠DAE=60°,
∴∠BAC-∠DAC=∠DAE-∠DAC,
∴∠BAD=∠CAE,
在△ABD和△ACE中,
∴△ABD≌△ACE(SAS),
∴BD=CE;
【小问2解析】
解:∵△ADE是等边三角形,
∴∠ADE=∠AED=60°,
∵点B,D,E三点共线
∴∠ADB=120°,
∵△ABD≌△ACE,
∴∠AEC=∠ADB=120°,
∴∠CED=∠AEC-∠AED=60°,
∵CD⊥BE,
∴∠CDE=90°,
∴∠DCE=30°,
∴BD=CE=2DE=6.
24【答案】:
(1)±1; (2)
解析:
【小问1解析】
解:∵,
∴,
∴,
即,
解得,
∴的值为;
【小问2解析】
解:∵m2﹣10mn+26n2+4n+4=0,
∴m2﹣10mn+25n2+n2+4n+4=0,
∴(m﹣5n)2+(n+2)2=0,
∴m﹣5n=0,n+2=0,
∴n=﹣2,m=﹣10,
∴mn=,
∴mn的值为.
25【答案】:
(1)这项工程的规定时间是30天;
(2)该工程的施工费用为180000元.
解析:
【小问1解析】
解:设这项工程的规定时间是x天,根据题意得:
,
解得x=30,
经检验x=30是方程的解,
答:这项工程的规定时间是30天;
【小问2解析】
解:该工程由甲、乙合做完成,所需时间为:
,
则该工程的施工费用是:18×(6500+3500)=180000(元),
答:该工程的施工费用为180000元.
26【答案】:
(1)BD,证明见解析;(2)见解析;(3)见解析.
解析:
(1)延长AB至F,使BF=BD,连接DF,根据三角形的外角性质得到∠ABC=2∠F,则可利用SAS证明△ADF≌△ADC,根据全等三角形的性质可证明结论;
(2)在AC上截取AE,使AE=AB,连接DE,则可利用SAS证明△ADB≌△ADE,根据全等三角形的性质即可证明结论;
(3)延长AB至G,使BG=BD,连接DG,则可利用SSS证明△ADG≌△ADC,根据全等三角形的性质、角平分线的定义即可证明结论.
解析:证明:(1)如图1,延长AB至F,使BF=BD,连接DF,
则∠BDF=∠F,
∴∠ABC=∠BDF+∠F=2∠F,
∵AD平分∠BAC
∴∠BAD=∠CAD,
∵AB+BD=AC,BF=BD,
∴AF=AC,
在△ADF和△ADC中,
,
∴△ADF≌△ADC(SAS),
∴∠ACB=∠F ,
∴∠ABC=2∠ACB.
故答案为:BD.
(2)如图3,在AC上截取AE,使AE=AB,连接DE,
∵AD,BD,CD分别平分∠BAC,∠ABC,∠ACB,
∴∠DAB=∠DAE,∠DBA=∠DBC,∠DCA=∠DCB,
∵AB+BD=AC,AE=AB,
∴DB=CE,
△ADB和△ADE中,
,
∴△ADB≌△ADE(SAS),
∴BD=DE,∠ABD=∠AED,
∴DE=CE,
∴∠EDC=∠ECD,
∴∠AED=2∠ECD,
∴∠ABD=2∠ECD,
∴∠ABC=2∠ACB.
(3)如图4,延长AB至G,使BG=BD,连接DG,
则∠BDG=∠AGD,
∴∠ABC=∠BDG+∠AGD=2∠AGD,
∵∠ABC=2∠ACB,
∴∠AGD=∠ACB,
∵AB+BD=AC,BG=BD,
∴AG=AC,
∴∠AGC=∠ACG,
∴∠DGC=∠DCG,
∴DG=DC,
在△ADG和△ADC中,
,
∴△ADG≌△ADC(SSS),
∴∠DAG=∠DAC,即AD平分∠BAC.
河北省邯郸市曲周县2022-2023学年七年级上学期期末模拟测试数学试卷(含解析): 这是一份河北省邯郸市曲周县2022-2023学年七年级上学期期末模拟测试数学试卷(含解析),共15页。试卷主要包含了选择题等内容,欢迎下载使用。
河北省邯郸市临漳县2022-2023学年八年级上学期期末模拟测试数学试卷(含解析): 这是一份河北省邯郸市临漳县2022-2023学年八年级上学期期末模拟测试数学试卷(含解析),共16页。试卷主要包含了选择题等内容,欢迎下载使用。
河北省邯郸市复兴区2022-2023学年八年级上学期期末模拟测试数学试卷(含解析): 这是一份河北省邯郸市复兴区2022-2023学年八年级上学期期末模拟测试数学试卷(含解析),共18页。试卷主要包含了选择题等内容,欢迎下载使用。