湖南省怀化市中学方县2023-2024学年数学八上期末综合测试模拟试题含答案
展开学校_______ 年级_______ 姓名_______
注意事项
1.考试结束后,请将本试卷和答题卡一并交回.
2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.
3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.
4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.
5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.
一、选择题(每题4分,共48分)
1.若一个多边形的内角和为1080°,则这个多边形的边数为( )
A.6B.7C.8D.9
2.下列命题中,是真命题的是( )
①两条直线被第三条直线所截,同位角相等;
②在同一平面内,垂直于同一直线的两条直线互相平行
③三角形的三条高中,必有一条在三角形的内部
④三角形的三个外角一定都是锐角
A.①②B.②③C.①③D.③④
3.下面有4个汽车商标图案,其中是轴对称图形的是( )
A.B.C.D.
4.若点P(x,y)在第四象限,且, ,则x+y等于:( )
A.-1B.1C.5D.-5
5.如图,AD是的中线,E,F分别是AD和AD延长线上的点,且,连结BF,CE.下列说法:①CE=BF;②△ABD和△ACD面积相等;③BF∥CE;④△BDF≌△CDE.其中正确的有( )
A.1个B.2个C.3个D.4个
6.若k<<k+1(k是整数),则k=( )
A.6B.7C.8D.9
7.下列银行标志中,既不是中心对称图形也不是轴对称图形的是( )
A.B.C.D.
8.如图,在△ABC中,∠B=90°,AB=6,BC=8,AD为∠BAC的角平分线,则三角形ADC的面积为( )
A.3B.10C.12D.15
9.如图,∠A=20°,∠B=30°,∠C=50°,求∠ADB的度数( )
A.50°B.100°C.70°D.80°
10.下列实数中,是无理数的是( )
A.B.C.D.
11.阿牛不慎将一块三角形的玻璃摔碎成如图所示的四块(即图中标有1、2、3、4的四块),他认为只须将其中的第2块带去,就能配一块与原来一样大小的三角形,阿牛这样做的理由是( )
A.SASB.ASAC.AASD.SSS
12.如图△ABC,AB=7,AC=3,AD是BC边上的中线则AD的取值范围为( )
A.4
13.若多项式9x2﹣2(m+1)xy+4y2是一个完全平方式,则m=_____.
14.如图,已知△ABC是等边三角形,D是AC边上的任意一点,点B,C,E在同一条直线上,且CE=CD,则∠E=_____度.
15.函数,的图象如图所示,当时,的范围是__________.
16.如图,在平面直角坐标系中,长方形OABC的顶点O在坐标原点,顶点A、C分别在x、y轴的正半轴上:OA=3,OC=4,D为OC边的中点,E是OA边上的一个动点,当△BDE的周长最小时,E点坐标为_____.
17.写出一个能说明命题:“若,则”是假命题的反例:__________.
18.如图,以AB为斜边的Rt△ABC的每条边为边作三个正方形,分别是正方形ABMN,正方形BCPQ,正方形ACEF,且边EF恰好经过点N.若S3=S4=5,则S1+S5=_____.(注:图中所示面积S表示相应封闭区域的面积,如S3表示△ABC的面积)
三、解答题(共78分)
19.(8分)上课时老师在黑板上书写了一个分式的正确化简结果,随后用手掌盖住了一部分,形式如下:
•﹣=
(1)聪明的你请求出盖住部分化简后的结果
(2)当x=2时,y等于何值时,原分式的值为5
20.(8分)先化简,再求值:,其中x满足.
21.(8分)如图1所示,在△ABC中,AB的垂直平分线交BC于点M,交AB于点E,AC的垂直平分线交BC于点N,交AC于点F,连接AM、AN.
(1)求证:△AMN的周长=BC;
(2)若AB=AC,∠BAC=120°,试判断△AMN的形状,并证明你的结论;
(3)若∠C=45°,AC=3,BC=9,如图2所示,求MN的长.
22.(10分)某中学为调查本校学生周末平均每天做作业所用时间的情况,随机调查了50名同学,如图是根据调查所得数据绘制的统计图的一部分。请根据以上信息,解答下列问题:
(1)求出每天作业用时是4小时的人数,并补全统计图;
(2)这次调查的数据中,做作业所用时间的众数是 ,中位数是 ,平均数是 ;
(3)若该校共有1500名学生,根据以上调查结果估计该校全体学生每天做作业时间在3小时内(含3小时)的同学共有多少人?
23.(10分)我们知道,任意一个正整数都可以进行这样的分解:(是正整数,且),在的所有这种分解中,如果两因数之差的绝对值最小,我们就称是的最佳分解,并规定.
例如:18可以分解成,,,因为,所以是18的最佳分解,所以.
(1)如果一个正整数是另外一个正整数的平方,我们称正整数是完全平方数.
求证:对任意一个完全平方数,总有;
(2)如果一个两位正整数,(,为自然数),交换其个位上的数与十位上的数,得到的新数减去原来的两位正整数所得的差为9,那么我们称这个为“求真抱朴数”,求所有的“求真抱朴数”;
(3)在(2)所得的“求真抱朴数”中,求的最大值.
24.(10分)近几年石家庄雾霾天气严重,给人们的生活带来很大影响.某学校计划在室内安装空气净化装置,需购进,两种设备.每台种设备价格比每台种设备价格多1万元,花50万元购买的种设备和花70万元购买种设备的数量相同.
(1)求种、种设备每台各多少万元?
(2)根据单位实际情况,需购进、两种设备共10台,总费用不高于30万元,求种设备至少要购买多少台?
25.(12分)节能又环保的油电混合动力汽车,既可以用油做动力行驶,也可以用电做动力行驶,某品牌油电混合动力汽车从甲地行驶到乙地,若完全用油做动力行驶,则费用为80元;若完全用电做动力行驶,则费用为30元,已知汽车行驶中每千米用油费用比用电费用多0.5元.
(1)求:汽车行驶中每千米用电费用是多少元?甲、乙两地的距离是多少千米?
(2)若汽车从甲地到乙地采用油电混合动力行驶,且所需费用不超过50元,则至少需要用电行驶多少千米?
26.(12分)一辆货车从甲地匀速驶往乙地,到达乙地停留一段时间后,沿原路以原速返回甲地.货车出发一段时间后,一辆轿车以的速度从甲地匀速驶往乙地.货车出发时,两车在距离甲地处相遇,货车回到甲地的同时轿车也到达乙地.货车离甲地的距离、轿车离甲地的距离分别与货车所用时间之间的函数图像如图所示.
(1)货车的速度是______,的值是______,甲、乙两地相距______;
(2)图中点表示的实际意义是:______.
(3)求与的函数表达式,并求出的值;
(4)直接写出货车在乙地停留的时间.
参考答案
一、选择题(每题4分,共48分)
1、C
2、B
3、B
4、A
5、C
6、D
7、D
8、D
9、B
10、B
11、B
12、B
二、填空题(每题4分,共24分)
13、﹣7或1
14、1.
15、
16、 (1,0)
17、(注:答案不唯一)
18、1
三、解答题(共78分)
19、(1)﹣;(2)y=
20、,1.
21、(1)见解析;(2)△AMN是等边三角形,见解析;(3)
22、(1)8;统计图见解析;(2)3小时,3小时,3小时;(3)估计该校全体学生每天做作业时间在3小时内(含3小时)的同学共有1020人.
23、(1)见解析;(2)所有的“求真抱朴数”为:12,23,34,45,56,67,78,89;(3).
24、(1)中设备每台万元,种设备每台万元;(2)5台
25、 (1)每千米用电费用是0.3元,甲、乙两地的距离是100千米;(2)至少需要用电行驶60千米.
26、(1) 80;9;400 ;(2)货车出发后,轿车与货车在距甲地处相遇;(3) ;(4)货车在乙地停留.
2023-2024学年湖南省怀化市中学方县数学九上期末教学质量检测模拟试题含答案: 这是一份2023-2024学年湖南省怀化市中学方县数学九上期末教学质量检测模拟试题含答案,共8页。试卷主要包含了下列方程是一元二次方程的是等内容,欢迎下载使用。
2023-2024学年湖南省怀化市靖州苗族侗族自治县数学九上期末统考模拟试题含答案: 这是一份2023-2024学年湖南省怀化市靖州苗族侗族自治县数学九上期末统考模拟试题含答案,共9页。试卷主要包含了考生必须保证答题卡的整洁,方程的解是等内容,欢迎下载使用。
2023-2024学年湖南省怀化市中学方县数学九上期末综合测试试题含答案: 这是一份2023-2024学年湖南省怀化市中学方县数学九上期末综合测试试题含答案,共8页。试卷主要包含了已知a≠0,下列计算正确的是等内容,欢迎下载使用。