北京市平谷区2023-2024学年数学八年级第一学期期末监测试题含答案
展开学校_______ 年级_______ 姓名_______
请考生注意:
1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。
2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、选择题(每小题3分,共30分)
1.若展开后不含的一次项,则与的关系是
A.B.
C.D.
2.如图,圆的直径为1个单位长度,圆上的点A与数轴上表示-1的点重合,将该圆沿数轴滚动一周,点A到达的位置,则点表示的数是( )
A.B.C.D.
3.如图,在中,,D是AB上的点,过点D作 交BC于点F,交AC的延长线于点E,连接CD,,则下列结论正确的有( )
①∠DCB=∠B;②CD=AB;③△ADC是等边三角形;④若∠E=30°,则DE=EF+CF.
A.①②③B.①②④C.②③④D.①②③④
4.若是完全平方式,则m的值等于( ).
A.3B.-5C.7D.7或-1
5.如图点在同一条直线上,都是等边三角形,相交于点O,且分别与交于点,连接,有如下结论:①;②;③为等边三角形;④.其中正确的结论个数是( )
A.1个B.2个C.3个D.4个
6.下列运算结果为的是
A.B.C.D.
7.下列命题是假命题的是( )
A.有一个角是60°的等腰三角形是等边三角形
B.等边三角形有3条对称轴
C.有两边和一角对应相等的两个三角形全等
D.线段垂直平分线上的点到线段两端的距离相等
8.11名同学参加数学竞赛初赛,他们的等分互不相同,按从高分录到低分的原则,取前6名同学参加复赛,现在小明同学已经知道自己的分数,如果他想知道自己能否进入复赛,那么还需知道所有参赛学生成绩的( )
A.平均数 B.中位数 C.众数 D.方差
9.若a、b、c为△ABC的三边长,且满足|a﹣4|+=0,则c的值可以为( )
A.5B.6C.7D.8
10.某校八年级一班抽取5名女生进行800米跑测试,她们的成绩分别为75,85,90,80,90(单位:分),则这次抽测成绩的众数和中位数分别是( )
A.90,85B.85,84C.84,90D.90,90
二、填空题(每小题3分,共24分)
11.把一个等腰直角三角板放在黑板上画好了的平面直角坐标系内,如图,已知直角顶点A的坐标为(0,1),另一个顶点B的坐标为(﹣5,5),则点C的坐标为________.
12.如果方程 无解,则m=___________.
13.已知关于x,y的方程组的唯一解是,则关于m,n的方程组的解是____________.
14.用不等式表示x的3倍与5的和不大于10是____________________;
15.某公司打算至多用1200元印制广告单.已知制版费50元,每印一张广告单还需支付0.3元的印刷费,则该公司可印制的广告单数量x(张)满足的不等式为_______.
16.如图,在中,,平分交BC于点,于点.若,则_______________.
17.如图,等腰三角形的底边长为,面积是,腰的垂直平分线分别交,边于,点.若点为边的中点,点为线段上一动点,则周长的最小值为_________.
18.如图,将一张长方形纸片分别沿着EP、FP对折,使点A落在点A′,点B落在点B′,若点P,A′,B′在同一直线上,则两条折痕的夹角∠EPF的度数为_____.
三、解答题(共66分)
19.(10分)如图,已知∠1+∠2=180°,∠3=∠B,试判断∠AED与∠ACB的大小关系,并说明理由.
20.(6分)如图,点,,,在一条直线上,,,,求证:.
21.(6分)如图,△ABC的顶点坐标分别为A(2,3),B(1,1),C(3,2).
(1)将△ABC向下平移4个单位长度,画出平移后的△ABC;
(2)画出△ABC关于y轴对称的△ABC. 并写出点A,B,C的坐标.
22.(8分)阅读下列解方程组的部分过程,回答下列问题
解方程组
现有两位同学的解法如下:
解法一;由①,得x=2y+5,③
把③代入②,得1(2y+5)﹣2y=1.……
解法二:①﹣②,得﹣2x=2.……
(1)解法一使用的具体方法是________,解法二使用的具体方法是______,以上两种方法的共同点是________.
(2)请你任选一种解法,把完整的解题过程写出来
23.(8分)如图,在△ABC中,∠BAC是钝角,按要求完成下列画图.(不写作法,保留作图痕迹)
(1)用尺规作∠BAC的平分线AE和AB边上的垂直平分线MN;
(2)用三角板作AC边上的高BD.
24.(8分)解方程:=-.
25.(10分)为了解某区八年级学生的睡眠情况,随机抽取了该区八年级学生部分学生进行调查.已知D组的学生有15人,利用抽样所得的数据绘制所示的统计图表.
根据图表提供的信息,回答下列问题:
(1)试求“八年级学生睡眠情况统计图”中的a的值及a对应的扇形的圆心角度数;
(2)如果睡眠时间x(时)满足:,称睡眠时间合格.已知该区八年级学生有3250人,试估计该区八年级学生睡眠时间合格的共有多少人?
(3)如果将各组别学生睡眠情况分组的最小值(如C组别中,取),B、C、D三组学生的平均睡眠时间作为八年级学生的睡眠时间的依据.试求该区八年级学生的平均睡眠时间.
26.(10分)如示例图将4×4的棋盘沿格线划分成两个全等的图形,请再用另外3种方法将4×4的棋盘沿格线划分成两个全等图形(约定某两种划分法可经过旋转、轴对称得到的划分法为相同划分法).
参考答案
一、选择题(每小题3分,共30分)
1、B
2、D
3、B
4、D
5、D
6、D
7、C
8、B
9、A
10、A
二、填空题(每小题3分,共24分)
11、(﹣4,﹣4)
12、1
13、
14、3x+5≤1
15、50+0.3x≤1200
16、56°
17、11
18、90°
三、解答题(共66分)
19、∠AED=∠ACB,见解析
20、见解析
21、(1)见解析;(2)作图见解析,
22、 (1)代入消元法;加减消元法;基本思路都是消元;(2).
23、(1)作图见解析;(2)作图见解析.
24、
25、(1),对应扇形的圆心角度数为18;(2)该区八年级学生睡眠时间合格的共有人;(3)该区八年级学生的平均睡眠时间为小时.
26、见解析
组别
睡眠时间
北京市平谷区2023-2024学年八年级上学期期末数学试题: 这是一份北京市平谷区2023-2024学年八年级上学期期末数学试题,共20页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
北京市平谷区2023-2024学年九年级上学期期末数学试题: 这是一份北京市平谷区2023-2024学年九年级上学期期末数学试题,共29页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
2023-2024学年北京市平谷区数学九上期末达标测试试题含答案: 这是一份2023-2024学年北京市平谷区数学九上期末达标测试试题含答案,共7页。试卷主要包含了下列事件中,是必然事件的是,下列命题等内容,欢迎下载使用。