精品解析:广东省深圳市龙华区2022-2023学年九年级下学期数学调研试卷
展开说明:1、答题前,请将姓名、准考证号和学校用黑色字迹的钢笔或签字笔填写在答题卡指定的位置上,并将条形码粘贴好.
2.全卷共6页.考试时间90分钟,满分100分.
3.作答选择题1~10,选出每题答案后,用2B铅笔把答题卡上对应题目答案标号的信息点框涂黑.如需改动,用橡皮擦干净后,再选涂其它答案.作答非选择题11~22,用黑色字迹的钢笔或签字笔将答案(含作辅助线)写在答题卡指定区域内.写在本试卷或草稿纸上,其答案一律无效.
4.考试结束后,请将答题卡交回.
第一部分 选择题
一、选择题(本大题共10小题,每小题3分,共30分,每小题有四个选项,其中只有一个是正确的)
1. 砚台与笔、墨、纸是中国传统的文房四宝,是中国书法的必备用具.如图是一方寓意“规矩方圆”的砚台,它的俯视图是( )
A. B. C. D.
2. 在《九章算术》一书中,对开方开不尽的数起了一个名字,叫做“面”.这是中国传统数学对无理数的最早记载.下面符合“面”的描述的数是( )
A. B. C. D.
3. 下列运算正确的是( )
A. B.
C. D.
4. 农户利用“立体大棚种植技术”把毛豆和芹菜进行混种.已知毛豆齐苗后棚温在最适宜,播种芹菜的最适宜温度是.农户在毛豆齐苗后在同一大棚播种了芹菜,这时应该把大棚温度设置在下列哪个范围最适宜( )
A. B. C. D. 以上
5. 如图,某商场有一自动扶梯,其倾斜角为,高为米,扶梯的长度是( )
A. B. C. D.
6. 如图是小杰同学家中的一个沙漏计时器,相关实验结果表明,沙漏中的沙下落的速度可以近似看成匀速,从计时器开始计时到计时止,上面玻璃球内的含沙量()与时间()之间的函数关系图像大致为( )
A. B. C. D.
7. 如图,这条活灵活现的“小鱼”是由若干条线段组成的,它是一个轴对称图形,对称轴为直线,则下列结论不一定正确的是( )
A. 点和点到直线的距离相等B.
C. D. 四边形是菱形
8. 如图,在中,,,,D,E分别是的中点,连接.以点A为圆心,适当长度为半径作弧,分别交于点M,N;以点D为圆心,长为半径作弧交于点P;以点P为圆心,长为半径作弧,交前面的孤于点Q;作射线交于点F.则的长为( )
A. 3B. 4C. 5D. 6
9. 某公司去年10月份的营业额为2500万元,后来公司改变营销策略,12月份的营业额达到3780万元,已知12月份的增长率是11月份的1.3倍,求11月份的增长率.设11月份的增长率为,根据题意,可列方程为( )
A. B.
C. D.
10. 如图,在中,,是上一点,连接,若,,则的值是( )
A. B. C. D.
第二部分 非选择题
二、填空题(本大题共5小题,每小题3分,共15分)
11. 计算:______.
12. 新学期开始,小颖从学校开设感兴趣的5门劳动教育课程:烹饪、茶艺、花卉种植、整理收纳、家电维修中,随机选择一门课程学习,她选择“茶艺”课程的概率是______.
13. 已知是方程组的解,则______.
14. 如图,在平面直角坐标系中,,将沿轴向上平移3个单位至,连接,若反比例函数的图象恰好过点与的中点,则______.
15. 如图,在边长为4米的正方形场地内,有一块以为直径的半圆形红外线接收“感应区”,边上的处有一个红外线发射器,红外线从点发射后,经、上某处的平面镜反射后到达 “感应区”,若米,当红外线途经的路线最短时,上平面镜的反射点距离点______米.
三、解答题(本大题共7小题,共55分)
16. 解不等式组
17. 先化简、再求值:,其中.
18. 为了解九年级学生对某个知识点的掌握程度,某校对九年级学生以人一组进行了随机分组,开展了一次素养调研,并用SOLO评分模型进行评分:“完全不理解”记为分,“了解了一个方面”记为分,“了解了几个独立的方面”记为分,“理解了几个方面的相关性”记为分,“能够综合运用”记为分,现从调查结果中随机抽取了个小组学生的得分,进行统计分析,过程如下:
【整理与描述】
(1)请补全第小组得分条形统计图;第小组得分扇形统计图中,“得分为分”这一项所对应的圆心角的度数为______.
(2)【分析与估计】
由上表填空:______,______,______;
(3)若该校九年级有名学生,请你估计该校九年级学生在调研中表现为“能够综合运用”人数有______人;
(4)【评价与建议】结合你的分析,请给第组的同学提供一条有关该知识点的学习建议.
19. 如图,是的外接圆,连接,过点作一条射线.
(1)请从以下条件中:①,;②;③平分.选择一组能证明是的切线的条件,并写出证明过程;
(2)若,,,求的长度.(结果保留)
20. 随着天气转暖,越来越多的市民喜欢到户外活动,小明与同学约定周末带帐篷到附近露营地开展活动.
(1)【买帐蓬】经了解,某种帐篷有A、B两种型号,已知A型帐篷的单价比B型帐篷的单价多30元,用1200元购买A型帐篷的数量和用900元购买B型帐篷的数量相同.小明买了A、B两种型号帐篷各2个,共需多少钱?
(2)【摆帐蓬】周末,小明与同学一起来到露营地,发现有一块由篱笆围绕长20米,宽14米的矩形草地(抽象成如图1的的方格纸)可用来摆帐篷.经测量,每个帐篷占据的地面部分是半径为3米的圆形(抽象成如图2的圆),为保障通行,帐篷四周需要留有通道,通道最狭窄处的宽度不小于1米.小明将第一个帐篷按要求摆放在如图所示的位置,此块草地内最多还能摆下几个同样大小的帐篷呢?请在图2中画出符合要求的设计示意图.(要求:圆心要画在格点上,画圆时要用圆规)
21. 【课本再现】把两个全等的矩形和矩形拼成如图1的图案,则______;
【迁移应用】如图2,在正方形中,E是边上一点(不与点C,D重合),连接,将绕点E顺时针旋转至,作射线交的延长线于点G,求证:;
【拓展延伸】在菱形中,,E是边上一点(不与点C,D重合),连接,将绕点E顺时针旋转至,作射线交的延长线于点G.
①线段与数量关系是_______.
②若,E是的三等分点,则的面积为_______.
22. 【定义】若抛物线与一水平直线交于两点,我们把这两点间线段的长称为抛物线关于这条直线的跨径,抛物线的顶点到该直线的距离称为抛物线关于这条直线的矢高,矢高与跨径的比值称为抛物线关于这条直线的矢跨比.
如图1,抛物线的顶点为,轴于点,它与轴交于点,,则的长为抛物线关于轴的跨径,的长为抛物线关于轴的矢高,的值为抛物线关于轴的矢跨比.
【特例】如图2,已知抛物线与轴交于点,(点点右侧);
①抛物线关于轴的矢高是______,跨径是______,矢跨比是______;
②有一抛物线经过点,与抛物线开口方向与大小一样,且矢高是抛物线关于轴的矢高的,求它关于轴的矢跨比;
【推广】结合抛物线的平移规律可以发现,两条开口方向与大小一样的抛物线,若第一条抛物线的矢高是第二条抛物线关于同一直线的矢高的()倍,则第一条抛物线的跨径是第二条抛物线关于同一直线的跨径的______倍(用含的代数式表示);
【应用】如图3是某地一座三拱桥梁建筑示意图,其中主跨与边跨的拱轴线为开口方向与大小一样的抛物线,它们关于水平钢梁所在直线的跨径分别为420米与280米,已知主跨的矢跨比为,则边跨的矢跨比是______.
平均数
众数
中位数
第1组
第2组
第3组
精品解析:2023年广东省深圳市龙华区中考二模数学试卷: 这是一份精品解析:2023年广东省深圳市龙华区中考二模数学试卷,文件包含精品解析2023年广东省深圳市龙华区中考二模数学试卷原卷版docx、精品解析2023年广东省深圳市龙华区中考二模数学试卷解析版docx等2份试卷配套教学资源,其中试卷共35页, 欢迎下载使用。
精品解析:广东省深圳市龙华区龙华区高峰学校2021-2022学年九年级下学期第三次月考数学试题: 这是一份精品解析:广东省深圳市龙华区龙华区高峰学校2021-2022学年九年级下学期第三次月考数学试题,文件包含精品解析广东省深圳市龙华区龙华区高峰学校2021-2022学年九年级下学期第三次月考数学试题原卷版docx、精品解析广东省深圳市龙华区龙华区高峰学校2021-2022学年九年级下学期第三次月考数学试题解析版docx等2份试卷配套教学资源,其中试卷共23页, 欢迎下载使用。
精品解析:2022年广东省深圳市龙华区中考数学模拟试卷: 这是一份精品解析:2022年广东省深圳市龙华区中考数学模拟试卷,文件包含精品解析2022年广东省深圳市龙华区中考数学模拟试卷原卷版docx、精品解析2022年广东省深圳市龙华区中考数学模拟试卷解析版docx等2份试卷配套教学资源,其中试卷共32页, 欢迎下载使用。