![专题02 数字图形等规律类填空题精炼(原卷版) 第1页](http://img-preview.51jiaoxi.com/2/3/15118488/0-1703477308281/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![专题02 数字图形等规律类填空题精炼(原卷版) 第2页](http://img-preview.51jiaoxi.com/2/3/15118488/0-1703477308322/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![专题02 数字图形等规律类填空题精炼(解析版) 第1页](http://img-preview.51jiaoxi.com/2/3/15118488/1-1703477310968/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![专题02 数字图形等规律类填空题精炼(解析版) 第2页](http://img-preview.51jiaoxi.com/2/3/15118488/1-1703477311034/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![专题02 数字图形等规律类填空题精炼(解析版) 第3页](http://img-preview.51jiaoxi.com/2/3/15118488/1-1703477311064/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
所属成套资源:2023年中考数学以三种题型出现必考压轴题27个小微专题精炼
专题02 数字图形等规律类填空题精炼2023年中考数学以三种题型出现必考压轴题27个小微专题精炼
展开
这是一份专题02 数字图形等规律类填空题精炼2023年中考数学以三种题型出现必考压轴题27个小微专题精炼,文件包含专题02数字图形等规律类填空题精炼原卷版docx、专题02数字图形等规律类填空题精炼解析版docx等2份试卷配套教学资源,其中试卷共19页, 欢迎下载使用。
1.按一定规律排列的一列数依次为:﹣,,﹣,,…(a≠0),按此规律排列下去,这列数中的第n个数是 .(n为正整数)
【答案】(﹣1)n•.
18.【解析】第1个数为(﹣1)1•,
第2个数为(﹣1)2•,
第3个数为(﹣1)3•,
第4个数为(﹣1)4•,
…,
所以这列数中的第n个数是(﹣1)n•.
故答案为(﹣1)n•.
2.有2019个数排成一行,对于任意相邻的三个数,都有中间的数等于前后两数的和.如果第一个数是0,第二个数是1,那么前6个数的和是 ,这2019个数的和是 .
【答案】0,2.
【解析】根据题意可以写出这组数据的前几个数,从而可以数字的变化规律,本题得以解决.
由题意可得,
这列数为:0,1,1,0,﹣1,﹣1,0,1,1,…,
∴前6个数的和是:0+1+1+0+(﹣1)+(﹣1)=0,
∵2019÷6=336…3,
∴这2019个数的和是:0×336+(0+1+1)=2,
故答案为:0,2.
【点评】本题考查数字的变化类,解答本题的关键是明确题意,发现题目中数字的变化规律,每六个数重复出现.
3.有一列数,按一定规律排列成1,﹣2,4,﹣8,16,﹣32,…,其中某三个相邻数的积是412,则这三个数的和是 .
【答案】﹣384.
【解析】根据题目中的数字,可以发现它们的变化规律,再根据其中某三个相邻数的积是412,可以求得这三个数,从而可以求得这三个数的和.
∵一列数为1,﹣2,4,﹣8,16,﹣32,…,
∴这列数的第n个数可以表示为(﹣2)n﹣1,
∵其中某三个相邻数的积是412,
∴设这三个相邻的数为(﹣2)n﹣1、(﹣2)n、(﹣2)n+1,
则(﹣2)n﹣1•(﹣2)n•(﹣2)n+1=412,
即(﹣2)3n=(22)12,
∴(﹣2)3n=224,
∴3n=24,
解得,n=8,
∴这三个数的和是:
(﹣2)7+(﹣2)8+(﹣2)9=(﹣2)7×(1﹣2+4)=(﹣128)×3=﹣384,
故答案为:﹣384.
【点评】本题考查数字的变化类,解答本题的关键是明确题意,发现题目中数字的变化规律.
4.如图,把Rt△OAB置于平面直角坐标系中,点A的坐标为(0,4),点B的坐标为(3,0),点P是Rt△OAB内切圆的圆心.将Rt△OAB沿x轴的正方向作无滑动滚动,使它的三边依次与x轴重合,第一次滚动后圆心为P1,第二次滚动后圆心为P2,…,依此规律,第2019次滚动后,Rt△OAB内切圆的圆心P2019的坐标是 .
【答案】(8077,1).
【解析】由勾股定理得出AB==5,得出Rt△OAB内切圆的半径==1,因此P的坐标为(1,1),由题意得出P3的坐标(3+5+4+1,1),得出规律:每滚动3次一个循环,由2019÷3=673,即可得出结果.
【解答】∵点A的坐标为(0,4),点B的坐标为(3,0),
∴OA=4,OB=3,
∴AB==5,
∴Rt△OAB内切圆的半径==1,
∴P的坐标为(1,1),
∵将Rt△OAB沿x轴的正方向作无滑动滚动,使它的三边依次与x轴重合,第一次滚动后圆心为P1,第二次滚动后圆心为P2,…,
∴P3(3+5+4+1,1),即(13,1),
每滚动3次一个循环,
∵2019÷3=673,
∴第2019次滚动后,Rt△OAB内切圆的圆心P2019的横坐标是673×(3+5+4)+1,
即P2019的横坐标是8077,
∴P2019的坐标是(8077,1);
故答案为:(8077,1).
5.如图,直线l:y=x+1分别交x轴、y轴于点A和点A1,过点A1作A1B1⊥l,交x轴于点B1,过点B1作B1A2⊥x轴,交直线l于点A2;过点A2作A2B2⊥l,交x轴于点B2,过点B2作B2A3⊥x轴,交直线l于点A3,依此规律…,若图中阴影△A1OB1的面积为S1,阴影△A2B1B2的面积为S2,阴影△A3B2B3的面积为S3…,则Sn= .
【答案】.
【解析】由直线l:y=x+1可求出与x轴交点A的坐标,与y轴交点A1的坐标,进而得到OA,OA1的长,也可求出Rt△OAA1的各个内角的度数,是一个特殊的直角三角形,以下所作的三角形都是含有30°角的直角三角形,然后这个求出S1、S2、S3、S4、……根据规律得出Sn.
【解答】直线l:y=x+1,当x=0时,y=1;当y=0时,x=﹣
∴A(﹣,0)A1(0,1)
∴∠OAA1=30°
又∵A1B1⊥l,
∴∠OA1B1=30°,
在Rt△OA1B1中,OB1=•OA1=,
∴S1=;
同理可求出:A2B1=,B1B2=,
∴S2===;
依次可求出:S3=;S4=;S5=……
因此:Sn=
故答案为:.
6.观察等式:2+22=23﹣2,2+22+23=24﹣2,2+22+23+24=25﹣2,…,已知按一定规律排列的一组数:2100,2101,2102,…,2199,若2100=m,用含m的代数式表示这组数的和是 .
【答案】m2﹣m.
【解析】归纳出数字的变化规律,给已知数列求和,并用含m的代数式表示出来即可.
由题意得:
2100+2101+2102+…+2199,
=(2+22+23+…+2199)﹣(2+22+23+…+299),
=(2200﹣2)﹣(2100﹣2),
=(2100)2﹣2100,
=m2﹣m
7.如图,将正整数按此规律排列成数表,则2021是表中第 行第 列.
【答案】64,5.
【解析】根据表格中的数据,可以写出前几行的数字个数,然后即可写出前n行的数字个数,从而可以得到2021在图中的位置.
由图可知,
第一行1个数字,
第二行2个数字,
第三行3个数字,
…,
则第n行n个数字,
前n行一共有个数字,
∵<2021<,2021﹣=2021﹣2016=5,
∴2021是表中第64行第5个列.
8.如表在我国宋朝数学家杨辉1261年的著作《详解九章算法》中提到过,因而人们把这个表叫做杨辉三角,请你根据杨辉三角的规律补全表第四行空缺的数字是 .
【答案】3
【解析】根据表中的数据和数据的变化特点,可以发现:每一行中间的数字都等于这个数字上一行左上角和右上角的数字之和,然后即可写出第四行空缺的数字.
由表可知,每一行中间的数字都等于这个数字上一行左上角和右上角的数字之和,
故第四行空缺的数字是1+2=3.
9. 观察下列“蜂窝图”,按照这样的规律,则第16个图案中的“”的个数是____________.
【答案】49
【解析】根据题意可知:第1个图案中有六边形图形:1+2+1=4个,第2个图案中有六边形图形:2+3+2=7个,……由规侓即可得答案.
∵第1个图案中有六边形图形:1+2+1=4个,
第2个图案中有六边形图形:2+3+2=7个,
第3个图案中有六边形图形:3+4+3=10个,
第4个图案中有六边形图形:4+5+4=13个,
……
∴第16个图案中有六边形图形:16+17+16=49个,
故答案为:49.
【点睛】此题考查图形的变化规律,解题的关键是找出图形之间的运算规律,利用规律解决问题.
10.正偶数2,4,6,8,10,…,按如下规律排列,
则第27行的第21个数是 _____.
【答案】744
【解析】由题意知,第n行有n个数,第n行的最后一个偶数为n(n+1),计算出第27行最后一个偶数,再减去与第21位之差即可得到答案.
【详解】由题意知,第n行有n个数,第n行的最后一个偶数为n(n+1),
∴第27行的最后一个数,即第27个数为,
∴第27行的第21个数与第27个数差6位数,即,
故答案为:744.
【点睛】本题考查数字类规律的探究,根据已知条件的数字排列找到规律,用含n的代数式表示出来由此解决问题是解题的关键.
11.古希腊数学家定义了五边形数,如下表所示,将点按照表中方式排列成五边形点阵,图形中的点的个数即五边形数;
将五边形数1,5,12,22,35,51,…,排成如下数表;
观察这个数表,则这个数表中的第八行从左至右第2个数为 .
【答案】1335.
【解析】观察表中图形及数字的变化规律可发现第n个五边形数可表示为:1+2+3+...+(n﹣1)+n2,观察数表找到规律,计算出这个数表中的第八行从左至右第2个数是第几个五边形数即n的值,代入上面的代数式即可求得答案.
解:观察表中图形及数字的变化规律可得第n个五边形数可表示为:1+2+3+...+(n﹣1)+n2,
由数表可知前七行数的个数和为:1+2+3+...+7=28,
∴数表中的第八行从左至右第2个数是第30个五边形数即n=30,
∴把n=30代入得:1+2+3+...+29+302,=1335,故答案为:1335.
12.将一些相同的“〇”按如图所示的规律依次摆放,观察每个“龟图”的“〇”的个数,则第30个“龟图”中有 个“〇”.
【答案】875.
【解析】分析数据可得:第1个图形中小圆的个数为1+4=5;第2个图形中小圆的个数为1+5+1=7;第3个图形中小圆的个数为1+6+4=11;第4个图形中小圆的个数为1+7+9=17;…由此得出第n个图形中小圆的个数为1+(n+3)+(n﹣1)2.据此可以求得答案.
解:∵第1个图形中小圆的个数为1+4=5;
第2个图形中小圆的个数为1+5+1=7;
第3个图形中小圆的个数为1+6+4=11;
第4个图形中小圆的个数为1+7+9=17;
…
∴第n个图形中小圆的个数为1+(n+3)+(n﹣1)2.
∴第30个“龟图”中的“〇”的个数为1+(30+3)+(30﹣1)2=1+33+841=875.
故答案为:875.
13.有2019个数排成一行,对于任意相邻的三个数,都有中间的数等于前后两数的和.如果第一个数是0,第二个数是1,那么前6个数的和是 ,这2019个数的和是 .
【答案】0,2.
【解析】根据题意可以写出这组数据的前几个数,从而可以数字的变化规律,本题得以解决.
由题意可得,
这列数为:0,1,1,0,﹣1,﹣1,0,1,1,…,
∴前6个数的和是:0+1+1+0+(﹣1)+(﹣1)=0,
∵2019÷6=336…3,
∴这2019个数的和是:0×336+(0+1+1)=2,
故答案为:0,2.
【点评】本题考查数字的变化类,解答本题的关键是明确题意,发现题目中数字的变化规律,每六个数重复出现.
14.有一列数,按一定规律排列成1,﹣2,4,﹣8,16,﹣32,…,其中某三个相邻数的积是412,则这三个数的和是 .
【答案】﹣384.
【解析】根据题目中的数字,可以发现它们的变化规律,再根据其中某三个相邻数的积是412,可以求得这三个数,从而可以求得这三个数的和.
∵一列数为1,﹣2,4,﹣8,16,﹣32,…,
∴这列数的第n个数可以表示为(﹣2)n﹣1,
∵其中某三个相邻数的积是412,
∴设这三个相邻的数为(﹣2)n﹣1、(﹣2)n、(﹣2)n+1,
则(﹣2)n﹣1•(﹣2)n•(﹣2)n+1=412,
即(﹣2)3n=(22)12,
∴(﹣2)3n=224,
∴3n=24,
解得,n=8,
∴这三个数的和是:
(﹣2)7+(﹣2)8+(﹣2)9=(﹣2)7×(1﹣2+4)=(﹣128)×3=﹣384,
故答案为:﹣384.
【点评】本题考查数字的变化类,解答本题的关键是明确题意,发现题目中数字的变化规律.
15.观察算式:
(1)=======10,
(2)======100=102.
发现什么规律?用你发现的规律直接写出下题的结果:
= .
【答案】10n
【解析】根据他们给出的材料解答即可.
∵=======10,
======100=102.
∴=10n.
故答案为:10n
16.有一列数,按一定的规律排列成,,3,,27,-81,….若其中某三个相邻数的和是,则这三个数中第一个数是______.
【答案】
【解析】题中数列的绝对值的比是-3,由三个相邻数的和是,可设三个数为n,-3n,9n,据题意列式即可求解.
题中数列的绝对值的比是-3,由三个相邻数的和是,可设第一个数是n,则三个数为n,-3 n,9n
由题意:,
解得:n=-81,
故答案为:-81.
【点睛】此题主要考查数列的规律探索与运用,一元一次方程与数字的应用,熟悉并会用代数式表示常见的数列,列出方程是解题的关键.
17.按一定规律排列的一列数:3,,,,,,,,…,若a,b,c表示这列数中的连续三个数,猜想a,b,c满足的关系式是__________.
【答案】bc=a
【解析】根据题目中的数字,可以发现相邻的数字之间的关系,从而可以得到a,b,c之间满足的关系式.
∵一列数:3,,,,,,,,…,
可发现:第n个数等于前面两个数的商,
∵a,b,c表示这列数中的连续三个数,
∴bc=a,
故答案为:bc=a.
【点睛】本题考查数字的变化类,解答本题的关键是明确题意,发现题目中数字的变化规律,求出a,b,c之间的关系式.
18.观察下列各项:1,2,3,4,…,则第n项是 .
【答案】n.
【解析】根据题目中数字的特点,可以发现数字的整数部分是连续的整数,从1开始,而分数部分的分母是2的n次方,n从1开始,分子都是1,然后即可写出第n项对应的数字.
∵一列数为1,2,3,4,…,、
∴这列数可以写成:1,2,3,4,…,
∴第n项是n.
19.如图,在平面直角坐标系中,点N1(1,1)在直线l:y=x上,过点N1作N1M1⊥l,交x轴于点M1;过点M1作M1N2⊥x轴,交直线于N2;过点N2作N2M2⊥l,交x轴于点M2;过点M2作M2N3⊥x轴,交直线l于点N3;…,按此作法进行下去,则点M2021的坐标为 .
【答案】(22021,0).
【解析】因为直线解析式为y=x,故可以证明直线l是第一象限的角平分线,所以∠N1OM1=45°,所以可以证明△N1OM1为等腰直角三角形,可以利用N1的坐标求出OM1的长度,得到其坐标,用同样的方法求得M2,M3,...,即可解决.
解:如图1,过N1作N1E⊥x轴于N,过N1作N1F⊥y轴于F,
∵N1(1,1),
∴N1E=N1F=1,
∴∠N1OM1=45°,
∴∠N1OM=∠N1M1O=45°,
∴△N1OM1是等腰直角三角形,
∴N1F=OF=FM1=1,
∴OM1=2,
∴M1(2,0),
同理,△M2ON2是等腰直角三角形,
∴OM2=2OM1=4,
∴M2(4,0),
同理,OM3=2OM2=22OM1=23,
∴,
∴,
∴M4(24,0),
依次类推,故M2021(22021,0),
故答案为(22021,0).
20.如图,点B1在直线l:y=x上,点B1的横坐标为2,过B1作B1A1⊥1,交x轴于点A1,以A1B1为边,向右作正方形A1B1B2C1,延长B2C1交x轴于点A2;以A2B2为边,向右作正方形A2B2B3C2,延长B3C2交x轴于点A3;以A3B3为边,向右作正方形A3B3B4C3延长B4C3交x轴于点A4;…;按照这个规律进行下去,点∁n的横坐标为 (结果用含正整数n的代数式表示)
【答案】
【解析】过点B1、C1、C2、C3、C4分别作B1D⊥x轴,C1D1⊥x轴,C2D2⊥x轴,C3D3⊥x轴,C4D4⊥x轴,……垂足分别为D、D1、D2、D3、D4……
∵点B1在直线l:y=x上,点B1的横坐标为2,
∴点B1的纵坐标为1,
即:OD=2,B1D=1,
图中所有的直角三角形都相似,两条直角边的比都是1:2,
∴点C1的横坐标为:2++()0,
点C2的横坐标为:2++()0+()0×+()1=+()0×+()1
点C3的横坐标为:2++()0+()0×+()1+()1×+()2=+()0×+()1×++()2
点C4的横坐标为:=+()0×+()1×+()2×+()3
……
点∁n的横坐标为:=+()0×+()1×+()2×+()3×+()4×……+()n﹣1
=+[()0+()1×+()2+()3+()4……]+()n﹣1
=
故答案为:
图形
…
五边形数
1
5
12
22
35
51
…
相关试卷
这是一份专题26 二次函数综合类必考的填空题精炼-2023年中考数学以三种题型出现必考压轴题27个小微专题精炼,文件包含专题26二次函数综合类必考的填空题精炼原卷版docx、专题26二次函数综合类必考的填空题精炼解析版docx等2份试卷配套教学资源,其中试卷共15页, 欢迎下载使用。
这是一份专题20 圆的求值与证明类必考的填空题精炼-2023年中考数学以三种题型出现必考压轴题27个小微专题精炼,文件包含专题20圆的求值与证明类必考的填空题精炼原卷版docx、专题20圆的求值与证明类必考的填空题精炼解析版docx等2份试卷配套教学资源,其中试卷共16页, 欢迎下载使用。
这是一份专题11 动点类填空题精炼-2023年中考数学以三种题型出现必考压轴题27个小微专题精炼,文件包含专题11动点类填空题精炼原卷版docx、专题11动点类填空题精炼解析版docx等2份试卷配套教学资源,其中试卷共27页, 欢迎下载使用。